AIR algebraic multigrid for a space-time hybridizable discontinuous Galerkin discretization of advection(-diffusion)

This paper investigates the efficiency, robustness, and scalability of approximate ideal restriction (AIR) algebraic multigrid as a preconditioner in the all-at-once solution of a space-time hybridizable discontinuous Galerkin (HDG) discretization of advection-dominated flows. The motivation for this study is that the time-dependent advection-diffusion equation can be seen as a "steady" advection-diffusion problem in $(d+1)$-dimensions and AIR has been shown to be a robust solver for steady advection-dominated problems. Numerical examples demonstrate the effectiveness of AIR as a preconditioner for advection-diffusion problems on fixed and time-dependent domains, using both slab-by-slab and all-at-once space-time discretizations, and in the context of uniform and space-time adaptive mesh refinement. A closer look at the geometric coarsening structure that arises in AIR also explains why AIR can provide robust, scalable space-time convergence on advective and hyperbolic problems, while most multilevel parallel-in-time schemes struggle with such problems.

[1]  Yvan Notay,et al.  Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[2]  Charbel Farhat,et al.  Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations , 1996 .

[3]  Sander Rhebergen,et al.  A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2013, J. Comput. Phys..

[4]  Thomas A. Manteuffel,et al.  Nonsymmetric Algebraic Multigrid Based on Local Approximate Ideal Restriction (ℓAIR) , 2017, SIAM J. Sci. Comput..

[5]  Robert D. Falgout,et al.  Multigrid methods with space–time concurrency , 2017, Comput. Vis. Sci..

[6]  Sander Rhebergen,et al.  Space-Time Hybridizable Discontinuous Galerkin Method for the Advection–Diffusion Equation on Moving and Deforming Meshes , 2013 .

[7]  Michael Dumbser,et al.  A staggered space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations on two-dimensional triangular meshes , 2014, 1412.1260.

[8]  J. V. D. Vegt,et al.  A space--time discontinuous Galerkin method for the time-dependent Oseen equations , 2008 .

[9]  D. Bartuschat Algebraic Multigrid , 2007 .

[10]  Erik Burman,et al.  A Posteriori Error Estimation for Interior Penalty Finite Element Approximations of the Advection-Reaction Equation , 2009, SIAM J. Numer. Anal..

[11]  Hans De Sterck,et al.  Convergence analysis for parallel‐in‐time solution of hyperbolic systems , 2019, Numer. Linear Algebra Appl..

[12]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[13]  Jacob B. Schroder,et al.  Smoothed aggregation solvers for anisotropic diffusion , 2012, Numer. Linear Algebra Appl..

[14]  D. Dinkler,et al.  Fluid-structure coupling within a monolithic model involving free surface flows , 2005 .

[15]  Hans De Sterck,et al.  Optimizing MGRIT and Parareal coarse-grid operators for linear advection , 2019, ArXiv.

[16]  Xiaoying Dai,et al.  Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems , 2012, SIAM J. Sci. Comput..

[17]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[18]  T. L. Horváth,et al.  A locally conservative and energy‐stable finite‐element method for the Navier‐Stokes problem on time‐dependent domains , 2018, International Journal for Numerical Methods in Fluids.

[19]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[20]  Martin J. Gander,et al.  Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems , 2014, SIAM J. Sci. Comput..

[21]  Hans De Sterck,et al.  Optimizing multigrid reduction‐in‐time and Parareal coarse‐grid operators for linear advection , 2021, Numer. Linear Algebra Appl..

[22]  J. V. D. Vegt,et al.  Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .

[23]  Sander Rhebergen,et al.  A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains , 2012, J. Comput. Phys..

[24]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[25]  Tobias Weinzierl,et al.  A Geometric Space-Time Multigrid Algorithm for the Heat Equation , 2012 .

[26]  Michael Dumbser,et al.  A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes , 2016, J. Comput. Phys..

[27]  Thomas J. R. Hughes,et al.  A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems , 1997 .

[28]  Luming Wang,et al.  A high-order discontinuous Galerkin method with unstructured space–time meshes for two-dimensional compressible flows on domains with large deformations , 2015 .

[29]  Jaap J. W. van der Vegt,et al.  Space-time discontinuous Galerkin finite element method for two-fluid flows , 2011, J. Comput. Phys..

[30]  Panayot S. Vassilevski,et al.  The Auxiliary Space Preconditioner for the de Rham Complex , 2017, SIAM J. Numer. Anal..

[31]  Thomas A. Manteuffel,et al.  Reduction-based Algebraic Multigrid for Upwind Discretizations , 2017, 1704.05001.

[32]  Ricardo H. Nochetto,et al.  A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.

[33]  Ruipeng Li,et al.  Parallel Approximate Ideal Restriction Multigrid for Solving the SN Transport Equations , 2019, Nuclear Science and Engineering.

[34]  Vijaya R. Ambati,et al.  Space-time discontinuous Galerkin discretization of rotating shallow water equations on moving grids , 2006 .

[35]  S. McCormick,et al.  Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .

[36]  Luke N. Olson,et al.  Node aware sparse matrix-vector multiplication , 2016, J. Parallel Distributed Comput..

[37]  Keegan L. A. Kirk,et al.  Analysis of a Space-Time Hybridizable Discontinuous Galerkin Method for the Advection-Diffusion Problem on Time-Dependent Domains , 2018, SIAM J. Numer. Anal..

[38]  Jaime Peraire,et al.  Discontinuous Galerkin Solution of the Navier-Stokes Equations on Deformable Domains , 2007 .

[39]  Pierre Jamet,et al.  Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain , 1977 .

[40]  Stephanie Friedhoff,et al.  On “Optimal” h‐independent convergence of Parareal and multigrid‐reduction‐in‐time using Runge‐Kutta time integration , 2020, Numer. Linear Algebra Appl..

[41]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[42]  D. Dinkler,et al.  A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .

[43]  Luke N. Olson,et al.  Reducing communication in algebraic multigrid with multi-step node aware communication , 2019, Int. J. High Perform. Comput. Appl..

[44]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[45]  P. Wesseling,et al.  Geometric multigrid with applications to computational fluid dynamics , 2001 .

[46]  Ray S. Tuminaro,et al.  A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..

[47]  Thomas A. Manteuffel,et al.  Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..

[48]  Thomas A. Manteuffel,et al.  A Root-Node-Based Algebraic Multigrid Method , 2016, SIAM J. Sci. Comput..

[49]  Graham Horton,et al.  A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[50]  Volker John,et al.  An adaptive SUPG method for evolutionary convection–diffusion equations , 2014 .

[51]  H. van der Ven,et al.  An adaptive multitime multigrid algorithm for time-periodic flow simulations , 2008, J. Comput. Phys..

[52]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[53]  Robert D. Falgout,et al.  Parallel time integration with multigrid , 2013, SIAM J. Sci. Comput..

[54]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[55]  T. S. Haut,et al.  An Efficient Sweep-Based Solver for the SN Equations on High-Order Meshes , 2018 .

[56]  Sander Rhebergen,et al.  An exactly mass conserving space-time embedded-hybridized discontinuous Galerkin method for the Navier-Stokes equations on moving domains , 2019, J. Comput. Phys..

[57]  Ray S. Tuminaro,et al.  Multigrid transfers for nonsymmetric systems based on Schur complements and Galerkin projections , 2014, Numer. Linear Algebra Appl..

[58]  Daniel Ruprecht,et al.  Wave propagation characteristics of Parareal , 2017, Comput. Vis. Sci..

[59]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..