暂无分享,去创建一个
Sander Rhebergen | Ben S. Southworth | Abdullah A. Sivas | S. Rhebergen | B. Southworth | A. A. Sivas
[1] Yvan Notay,et al. Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..
[2] Charbel Farhat,et al. Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations , 1996 .
[3] Sander Rhebergen,et al. A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2013, J. Comput. Phys..
[4] Thomas A. Manteuffel,et al. Nonsymmetric Algebraic Multigrid Based on Local Approximate Ideal Restriction (ℓAIR) , 2017, SIAM J. Sci. Comput..
[5] Robert D. Falgout,et al. Multigrid methods with space–time concurrency , 2017, Comput. Vis. Sci..
[6] Sander Rhebergen,et al. Space-Time Hybridizable Discontinuous Galerkin Method for the Advection–Diffusion Equation on Moving and Deforming Meshes , 2013 .
[7] Michael Dumbser,et al. A staggered space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations on two-dimensional triangular meshes , 2014, 1412.1260.
[8] J. V. D. Vegt,et al. A space--time discontinuous Galerkin method for the time-dependent Oseen equations , 2008 .
[9] D. Bartuschat. Algebraic Multigrid , 2007 .
[10] Erik Burman,et al. A Posteriori Error Estimation for Interior Penalty Finite Element Approximations of the Advection-Reaction Equation , 2009, SIAM J. Numer. Anal..
[11] Hans De Sterck,et al. Convergence analysis for parallel‐in‐time solution of hyperbolic systems , 2019, Numer. Linear Algebra Appl..
[12] S. Mittal,et al. A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .
[13] Jacob B. Schroder,et al. Smoothed aggregation solvers for anisotropic diffusion , 2012, Numer. Linear Algebra Appl..
[14] D. Dinkler,et al. Fluid-structure coupling within a monolithic model involving free surface flows , 2005 .
[15] Hans De Sterck,et al. Optimizing MGRIT and Parareal coarse-grid operators for linear advection , 2019, ArXiv.
[16] Xiaoying Dai,et al. Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems , 2012, SIAM J. Sci. Comput..
[17] Raytcho D. Lazarov,et al. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..
[18] T. L. Horváth,et al. A locally conservative and energy‐stable finite‐element method for the Navier‐Stokes problem on time‐dependent domains , 2018, International Journal for Numerical Methods in Fluids.
[19] Tayfun E. Tezduyar,et al. Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .
[20] Martin J. Gander,et al. Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems , 2014, SIAM J. Sci. Comput..
[21] Hans De Sterck,et al. Optimizing multigrid reduction‐in‐time and Parareal coarse‐grid operators for linear advection , 2021, Numer. Linear Algebra Appl..
[22] J. V. D. Vegt,et al. Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .
[23] Sander Rhebergen,et al. A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains , 2012, J. Comput. Phys..
[24] O. C. Zienkiewicz,et al. The Finite Element Method: Its Basis and Fundamentals , 2005 .
[25] Tobias Weinzierl,et al. A Geometric Space-Time Multigrid Algorithm for the Heat Equation , 2012 .
[26] Michael Dumbser,et al. A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes , 2016, J. Comput. Phys..
[27] Thomas J. R. Hughes,et al. A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems , 1997 .
[28] Luming Wang,et al. A high-order discontinuous Galerkin method with unstructured space–time meshes for two-dimensional compressible flows on domains with large deformations , 2015 .
[29] Jaap J. W. van der Vegt,et al. Space-time discontinuous Galerkin finite element method for two-fluid flows , 2011, J. Comput. Phys..
[30] Panayot S. Vassilevski,et al. The Auxiliary Space Preconditioner for the de Rham Complex , 2017, SIAM J. Numer. Anal..
[31] Thomas A. Manteuffel,et al. Reduction-based Algebraic Multigrid for Upwind Discretizations , 2017, 1704.05001.
[32] Ricardo H. Nochetto,et al. A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.
[33] Ruipeng Li,et al. Parallel Approximate Ideal Restriction Multigrid for Solving the SN Transport Equations , 2019, Nuclear Science and Engineering.
[34] Vijaya R. Ambati,et al. Space-time discontinuous Galerkin discretization of rotating shallow water equations on moving grids , 2006 .
[35] S. McCormick,et al. Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .
[36] Luke N. Olson,et al. Node aware sparse matrix-vector multiplication , 2016, J. Parallel Distributed Comput..
[37] Keegan L. A. Kirk,et al. Analysis of a Space-Time Hybridizable Discontinuous Galerkin Method for the Advection-Diffusion Problem on Time-Dependent Domains , 2018, SIAM J. Numer. Anal..
[38] Jaime Peraire,et al. Discontinuous Galerkin Solution of the Navier-Stokes Equations on Deformable Domains , 2007 .
[39] Pierre Jamet,et al. Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain , 1977 .
[40] Stephanie Friedhoff,et al. On “Optimal” h‐independent convergence of Parareal and multigrid‐reduction‐in‐time using Runge‐Kutta time integration , 2020, Numer. Linear Algebra Appl..
[41] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[42] D. Dinkler,et al. A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .
[43] Luke N. Olson,et al. Reducing communication in algebraic multigrid with multi-step node aware communication , 2019, Int. J. High Perform. Comput. Appl..
[44] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[45] P. Wesseling,et al. Geometric multigrid with applications to computational fluid dynamics , 2001 .
[46] Ray S. Tuminaro,et al. A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..
[47] Thomas A. Manteuffel,et al. Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..
[48] Thomas A. Manteuffel,et al. A Root-Node-Based Algebraic Multigrid Method , 2016, SIAM J. Sci. Comput..
[49] Graham Horton,et al. A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..
[50] Volker John,et al. An adaptive SUPG method for evolutionary convection–diffusion equations , 2014 .
[51] H. van der Ven,et al. An adaptive multitime multigrid algorithm for time-periodic flow simulations , 2008, J. Comput. Phys..
[52] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[53] Robert D. Falgout,et al. Parallel time integration with multigrid , 2013, SIAM J. Sci. Comput..
[54] J. Lions,et al. Résolution d'EDP par un schéma en temps « pararéel » , 2001 .
[55] T. S. Haut,et al. An Efficient Sweep-Based Solver for the SN Equations on High-Order Meshes , 2018 .
[56] Sander Rhebergen,et al. An exactly mass conserving space-time embedded-hybridized discontinuous Galerkin method for the Navier-Stokes equations on moving domains , 2019, J. Comput. Phys..
[57] Ray S. Tuminaro,et al. Multigrid transfers for nonsymmetric systems based on Schur complements and Galerkin projections , 2014, Numer. Linear Algebra Appl..
[58] Daniel Ruprecht,et al. Wave propagation characteristics of Parareal , 2017, Comput. Vis. Sci..
[59] Dominik Schötzau,et al. Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..