Silicon photonics

The silicon chip has been the mainstay of the electronics industry for the last 40 years and has revolutionized the way the world operates. Today, a silicon chip the size of a fingernail contains nearly 1 billion transistors and has the computing power that only a decade ago would take up an entire room of servers. As the relentless pursuit of Moore's law continues, and Internet-based communication continues to grow, the bandwidth demands needed to feed these devices will continue to increase and push the limits of copper-based signaling technologies. These signaling limitations will necessitate optical-based solutions. However, any optical solution must be based on low-cost technologies if it is to be applied to the mass market. Silicon photonics, mainly based on SOI technology, has recently attracted a great deal of attention. Recent advances and breakthroughs in silicon photonic device performance have shown that silicon can be considered a material onto which one can build optical devices. While significant efforts are needed to improve device performance and commercialize these technologies, progress is moving at a rapid rate. More research in the area of integration, both photonic and electronic, is needed. The future is looking bright. Silicon photonics could provide low-cost opto-electronic solutions for applications ranging from telecommunications down to chip-to-chip interconnects, as well as emerging areas such as optical sensing technology and biomedical applications. The ability to utilize existing CMOS infrastructure and manufacture these silicon photonic devices in the same facilities that today produce electronics could enable low-cost optical devices, and in the future, revolutionize optical communications

[1]  Y. Vlasov,et al.  C-band wavelength conversion in silicon photonic wire waveguides. , 2005, Optics express.

[2]  O. Painter,et al.  Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. , 2005, Optics express.

[3]  B Jalali,et al.  Anti-Stokes Raman conversion in silicon waveguides. , 2003, Optics express.

[4]  Graham T. Reed,et al.  Silicon-on-insulator optical rib waveguide loss and mode characteristics , 1994 .

[5]  Y. Liu,et al.  In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides , 2006, IEEE Photonics Technology Letters.

[6]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[7]  Ivo Rendina,et al.  New possibilities for efficient silicon integrated electro-optical modulators , 1991 .

[8]  Graham T. Reed,et al.  Highly efficient optical phase modulator in SOI waveguides , 1995 .

[9]  H. Tsang,et al.  Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides , 2004 .

[10]  Y. Vlasov,et al.  Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. , 2003, Optics express.

[11]  Maria Miritello,et al.  Electroluminescence properties of light emitting devices based on silicon nanocrystals , 2003 .

[12]  Graham T. Reed,et al.  Design and experimental results of small silicon-based optical modulators , 2004, SPIE OPTO.

[13]  M. Morse,et al.  High speed silicon Mach-Zehnder modulator. , 2005, Optics express.

[14]  B Jalali,et al.  Influence of nonlinear absorption on Raman amplification in Silicon waveguides. , 2004, Optics express.

[15]  B. Jalali,et al.  Stress-induced phase matching in Silicon waveguides , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[16]  M. Berroth,et al.  Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth , 2005, IEEE Photonics Technology Letters.

[17]  M. Lipson,et al.  Nanotaper for compact mode conversion. , 2003, Optics letters.

[18]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[19]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.

[20]  J Liu,et al.  220-fs erbium-ytterbium:glass laser mode locked by a broadband low-loss silicon/germanium saturable absorber. , 2005, Optics letters.

[21]  Stephen E. Ralph,et al.  Integrated planar lightwave bio/chem OEIC sensors on Si CMOS circuits , 2005, SPIE OPTO.

[22]  P. Temple,et al.  Multiphonon Raman Spectrum of Silicon , 1973 .

[23]  Graham T. Reed,et al.  Silicon optical modulators , 2005 .

[24]  Tymon Barwicz,et al.  Multistage high-order microring-resonator add-drop filters. , 2006, Optics letters.

[25]  H. Renner,et al.  Efficient Raman Amplification in Cladding-Pumped Silicon Waveguides , 2006, 3rd IEEE International Conference on Group IV Photonics, 2006..

[26]  Graham T. Reed,et al.  Simulation of A Low Loss Optical Modulator for Fabrication in Simox Material , 1993 .

[27]  Xiaolian Liu,et al.  Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm , 1995 .

[28]  G. Shao,et al.  An efficient room-temperature silicon-based light-emitting diode , 2001, Nature.

[29]  Bardia Pezeshki,et al.  Wavelength‐selective waveguide photodetectors in silicon‐on‐insulator , 1996 .

[30]  Ivo Rendina,et al.  Advances in silicon-on-insulator optoelectronics , 1998 .

[31]  K. Petermann,et al.  Optical channel waveguides in silicon diffused from GeSi alloy , 1989 .

[32]  S. Asano,et al.  The design and implementation of a first-generation CELL processor , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[33]  B. Jalali,et al.  Monolithic vertical integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[34]  P. Bhattacharya,et al.  SiGe-Si quantum-well electroabsorption modulators , 1998, IEEE Photonics Technology Letters.

[35]  L. D. Negro,et al.  Stimulated emission in nanocrystalline silicon superlattices , 2003 .

[36]  R. Soref,et al.  Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2/ , 1991 .

[37]  D. Leong,et al.  A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm , 1997, Nature.

[38]  A. Grill,et al.  High-speed germanium-on-insulator photodetectors , 2005, 2005 IEEE LEOS Annual Meeting Conference Proceedings.

[39]  Bahram Jalali,et al.  Add-drop filters utilizing vertically coupled microdisk resonators in silicon , 2005 .

[40]  David J. Frank,et al.  Power-constrained CMOS scaling limits , 2002, IBM J. Res. Dev..

[41]  S. Fathpour,et al.  Demonstration of CW Raman gain with zero electrical power dissipation in p-i-n silicon waveguides , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[42]  T. Tsuchizawa,et al.  Four-wave mixing in silicon wire waveguides. , 2005, Optics express.

[43]  P. Dumon,et al.  Ultrafast non-inverting wavelength conversion by cross-absorption modulation in silicon wire waveguides , 2005 .

[44]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[45]  O. Boyraz,et al.  Self phase modulation induced spectral broadening in silicon waveguides , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[46]  C. Bongiorno,et al.  Quantum Dot Materials and Devices for Light Emission in Silicon , 2002, 32nd European Solid-State Device Research Conference.

[47]  J. Colinge Silicon-on-Insulator Technology: Materials to VLSI , 1991 .

[48]  M. Horowitz,et al.  Clocking and circuit design for a parallel I/O on a first-generation CELL processor , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[49]  B. Jalali,et al.  Wavelength conversion in silicon using Raman induced four-wave mixing , 2004 .

[50]  F. Xia,et al.  Efficient self-phase modulation in submicron silicon-on-insulator waveguides , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[51]  M. Wu,et al.  MEMS-actuated microdisk resonators with variable power coupling ratios , 2005, IEEE Photonics Technology Letters.

[52]  Ming C. Wu,et al.  Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction , 2006, Journal of Microelectromechanical Systems.

[53]  J. Campbell,et al.  Integrated silicon optical receiver with avalanche photodiode , 2003 .

[54]  G. Wong,et al.  Surface-micromachined Movable SOI Optical Waveguides , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[55]  J. Freeouf,et al.  Minority carrier lifetime results for SOI wafers , 1995, 1995 IEEE International SOI Conference Proceedings.

[56]  G. Burbach,et al.  Low loss singlemode optical waveguides with large cross-section in silicon-on-insulator , 1991 .

[57]  R. Salem,et al.  Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode , 2005, IEEE Photonics Technology Letters.

[58]  Bahram Jalali,et al.  Integrated optical directional couplers in silicon-on-insulator , 1995 .

[59]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[60]  B. Jalali,et al.  5 x 9 integrated optical star coupler in silicon-on-insulator technology , 1996, IEEE Photonics Technology Letters.

[61]  C. S. Tsai,et al.  Stimulated emission in a nanostructured silicon pn junction diode using current injection , 2004 .

[62]  F. Priolo,et al.  Light emitting devices based on silicon nanoclusters , 2005 .

[63]  M. Paniccia,et al.  Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. , 2004, Optics express.

[64]  B. Jalali,et al.  Parametric Raman wavelength conversion in scaled silicon waveguides , 2005, Journal of Lightwave Technology.

[65]  Richard A. Soref,et al.  Simulation studies of silicon electro-optic waveguide devices , 1990, Integrated Photonics Research.

[66]  Philippe M. Fauchet,et al.  Light emission from Si quantum dots , 2005 .

[67]  Koji Yamada,et al.  Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges. , 2003, Optics letters.

[68]  Y. Vlasov,et al.  Raman amplification in ultrasmall silicon-on-insulator wire waveguides. , 2004, Optics express.

[69]  J. Woo,et al.  Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides , 2005 .

[70]  T. Asano,et al.  SOI-based photonic crystals , 2005 .

[71]  Cary Gunn,et al.  CMOS Photonics for High-Speed Interconnects , 2006, IEEE Micro.

[72]  D. Miller,et al.  Optical interconnects to silicon , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[73]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[74]  M. Green,et al.  Efficient silicon light-emitting diodes , 2001, Nature.

[75]  K. Vahala,et al.  Ultralow-threshold erbium-implanted toroidal microlaser on silicon , 2004 .

[76]  Y. Vlasov,et al.  Losses in single-mode silicon-on-insulator strip waveguides and bends. , 2004, Optics express.

[77]  John Bowers,et al.  Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. , 2005, Optics express.

[78]  B. Jalali,et al.  SiGe waveguide photodetectors grown by rapid thermal chemical vapour deposition , 1992 .

[79]  Tai Tsuchizawa,et al.  Oxidation-induced improvement in the sidewall morphology and cross-sectional profile of silicon wire waveguides , 2004 .

[80]  R. Soref,et al.  Silicon double‐injection electro‐optic modulator with junction gate control , 1988 .

[81]  A. Scherer,et al.  Waveguiding in Planar Photonic Crystals , 2000 .

[82]  Peter T. Rakich,et al.  Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal , 2006, Nature materials.

[83]  P. Dumon,et al.  Efficient fiber to SOI photonic wire coupler fabricated using standard CMOS technology , 2005, 2005 IEEE LEOS Annual Meeting Conference Proceedings.

[84]  R. Walters,et al.  Field-effect electroluminescence in silicon nanocrystals , 2005, Nature materials.

[85]  Bahram Jalali,et al.  All optical switching and continuum generation in silicon waveguides. , 2004, Optics express.

[86]  B. Jalali,et al.  Energy harvesting in silicon Raman amplifiers , 2006, 3rd IEEE International Conference on Group IV Photonics, 2006..

[87]  S. Koester,et al.  A 15-Gb/s 2.4-V Optical Receiver Using a Ge-on-SOI Photodiode and a CMOS IC , 2006, IEEE Photonics Technology Letters.

[88]  S. Cloutier,et al.  Optical gain and stimulated emission in periodic nanopatterned crystalline silicon , 2005, Nature materials.

[89]  R. K. Chang,et al.  Spontaneous-Raman-Scattering Efficiency and Stimulated Scattering in Silicon , 1970 .

[90]  Y. Liu,et al.  Raman gain in helium ion implanted silicon waveguides , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[91]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[92]  Graham T. Reed,et al.  Low-loss, single-model optical phase modulator in SIMOX material , 1994 .

[93]  Steven G. Johnson,et al.  Photonic-crystal slow-light enhancement of nonlinear phase sensitivity , 2002 .

[94]  Bahram Jalali,et al.  Nonlinear absorption in silicon and the prospects of mid‐infrared silicon Raman lasers , 2006 .

[95]  A. Levi,et al.  Si-based receivers for optical data links , 1994 .

[96]  Kazumi Wada,et al.  High performance Ge p-i-n photodetectors on Si , 2005 .

[97]  T. Krauss,et al.  An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers , 2002 .

[98]  Bahram Jalali,et al.  Demonstration of directly modulated silicon Raman laser. , 2005, Optics express.

[99]  F. Coppinger,et al.  Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity , 1997, IEEE Photonics Technology Letters.

[100]  E. Jones,et al.  Highly dispersive photonic band-gap prism. , 1996, Optics letters.

[101]  O. Boyraz,et al.  10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers , 2000, Journal of Lightwave Technology.

[102]  D. Miller,et al.  Strong quantum-confined Stark effect in germanium quantum-well structures on silicon , 2005, Nature.

[103]  Masaya Notomi,et al.  Superprism Phenomena in Photonic Crystals , 1998 .