Approximation by structured lower rank matrices
暂无分享,去创建一个
[1] H. W. Turnbull,et al. Lectures on Matrices , 1934 .
[2] W. Cheney,et al. Proximity maps for convex sets , 1959 .
[3] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[4] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[5] James A. Cadzow,et al. Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..
[6] Gene H. Golub,et al. A Rank-One Reduction Formula and Its Applications to Matrix Factorizations , 1995, SIAM Rev..
[7] Hans D. Mittelmann,et al. Continuity of closest rank-p approximations to matrices , 1987, IEEE Trans. Acoust. Speech Signal Process..
[8] William Gropp,et al. Optimization environments and the NEOS server , 1997 .
[9] Alle-Jan van der Veen,et al. A Schur Method for Low-Rank Matrix Approximation , 1996, SIAM J. Matrix Anal. Appl..
[10] J. B. Rosen,et al. Low Rank Approximation of a Hankel Matrix by Structured Total Least Norm , 1999 .
[11] Thomas F. Coleman,et al. Optimization Toolbox User's Guide , 1998 .
[12] Shih-Ping Han,et al. A successive projection method , 1988, Math. Program..
[13] J. Madore. An Introduction to Noncommutative Differential Geometry and its Physical Applications: Extensions of Space-Time , 1995 .
[14] A. Cantoni,et al. Eigenvalues and eigenvectors of symmetric centrosymmetric matrices , 1976 .
[15] Bart De Moor,et al. Total least squares for affinely structured matrices and the noisy realization problem , 1994, IEEE Trans. Signal Process..
[16] James G. Nagy,et al. Space-varying restoration of optical images , 1997 .