Applications of Remote Sensing to Alien Invasive Plant Studies

Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions.

[1]  Doria Gordon Cronk, Q. C. B., and J. L. Fuller. 2001. Plant Invaders: the Threat to Natural Ecosystems. Earthscan Publications, London, UK. , 2002 .

[2]  G. A. Blackburn,et al.  Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery , 2002 .

[3]  Richard Lucas,et al.  Hyperspectral Sensors and Applications , 2004 .

[4]  D. Roberts,et al.  Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments , 2001 .

[5]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[6]  William Salas,et al.  A multivariable approach for mapping sub-pixel land cover distributions using MISR and MODIS: Application in the Brazilian Amazon region , 2003 .

[7]  R. Macarthur The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture , 2005 .

[8]  Per Jönsson,et al.  TIMESAT - a program for analyzing time-series of satellite sensor data , 2004, Comput. Geosci..

[9]  J. R. Cox,et al.  The influence of climate and soils on the distribution of four African grasses , 1988 .

[10]  Zdravko Baruch,et al.  African Grass Invasion in the Americas: Ecosystem Consequences and the Role of Ecophysiology , 2000, Biological Invasions.

[11]  Jacob T. Mundt,et al.  Discrimination of hoary cress and determination of its detection limits via hyperspectral image processing and accuracy assessment techniques , 2005 .

[12]  Roberta E. Martin,et al.  Leaf chemical and spectral diversity in Australian tropical forests. , 2009, Ecological applications : a publication of the Ecological Society of America.

[13]  John F. Mustard,et al.  Invasive grass reduces aboveground carbon stocks in shrublands of the Western US , 2006 .

[14]  Roberta E. Martin,et al.  Multiscale analysis of tree cover and aboveground carbon stocks in pinyon-juniper woodlands. , 2009, Ecological applications : a publication of the Ecological Society of America.

[15]  Heather Schussman,et al.  Spread and current potential distribution of an alien grass, Eragrostis lehmanniana Nees, in the southwestern USA: comparing historical data and ecological niche models , 2006 .

[16]  Ruiliang Pu,et al.  Estimation of yellow starthistle abundance through CASI-2 hyperspectral imagery using linear spectral mixture models , 2006 .

[17]  Roberta E. Martin,et al.  Vegetation–Climate Interactions among Native and Invasive Species in Hawaiian Rainforest , 2006, Ecosystems.

[18]  Roberta E. Martin,et al.  Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels , 2008 .

[19]  Gregory P. Asner,et al.  Ecological Research Needs from Multiangle Remote Sensing Data , 1998 .

[20]  D. P. Groeneveld,et al.  Near‐infrared discrimination of leafless saltcedar in wintertime Landsat TM , 2008 .

[21]  Amy E. Parker Williams,et al.  Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering , 2002 .

[22]  Sarah H. Reichard,et al.  Invasive Species Defined in a Policy Context: Recommendations from the Federal Invasive Species Advisory Committee , 2008, Invasive Plant Science and Management.

[23]  Julie P. Tuttle,et al.  QuickBird and Hyperion data analysis of an invasive plant species in the Galapagos Islands of Ecuador: Implications for control and land use management , 2008 .

[24]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[25]  Jacob T. Mundt,et al.  Mapping Sagebrush Distribution Using Fusion of Hyperspectral and Lidar Classifications , 2006 .

[26]  George B. Ruyle,et al.  Influence of climatic and edaphic factors on the distribution of Eragrostis lehmanniana Nees in Arizona, USA. , 1986 .

[27]  Christopher B. Field,et al.  Feedbacks of Terrestrial Ecosystems to Climate Change , 2007 .

[28]  John R. Schott,et al.  Remote Sensing: The Image Chain Approach , 1996 .

[29]  B. E T H A N Regional analysis of the impacts of climate change on cheatgrass invasion shows potential risk and opportunity , 2008 .

[30]  L. Guanter,et al.  Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data , 2007 .

[31]  M. Ashton,et al.  Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .

[32]  Fred A. Kruse,et al.  Mineral Mapping with AVIRIS and EO-1 Hyperion , 2004 .

[33]  John F. Mustard,et al.  Identifying land cover variability distinct from land cover change: Cheatgrass in the Great Basin , 2005 .

[34]  Cho-ying Huang,et al.  Climate anomalies provide opportunities for large‐scale mapping of non‐native plant abundance in desert grasslands , 2008 .

[35]  J. Pergl,et al.  Aerial photographs as a tool for assessing the regional dynamics of the invasive plant species Heracleum mantegazzianum , 2005 .

[36]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[37]  Peter M. Vitousek,et al.  Biological invasions and ecosystem processes : towards an integration of population biology and ecosystem studies , 1990 .

[38]  S. Drake,et al.  Climate-correlative modeling of phytogeography at the watershed scale. , 2000 .

[39]  Roberta E. Martin,et al.  Invasive plants transform the three-dimensional structure of rain forests , 2008, Proceedings of the National Academy of Sciences.

[40]  C. Wessman,et al.  Textural Analysis of Historical Aerial Photography to Characterize Woody Plant Encroachment in South African Savanna , 1998 .

[41]  Stephen R. Yool,et al.  Plant invasions in dynamic desert landscapes. A field and remote sensing assessment of predictive and change modeling , 2008 .

[42]  S. Ustin,et al.  The role of environmental context in mapping invasive plants with hyperspectral image data , 2008 .

[43]  C. Justice,et al.  Analysis of the phenology of global vegetation using meteorological satellite data , 1985 .

[44]  D. Cable,et al.  Lehmann lovegrass on the Santa Rita Experimental Range, 1937--1968. , 1971 .

[45]  Dukes,et al.  Does global change increase the success of biological invaders? , 1999, Trends in ecology & evolution.

[46]  D. Gorchov,et al.  Detecting an invasive shrub in a deciduous forest understory using late‐fall Landsat sensor imagery , 2007 .

[48]  Philippe C. Baveye,et al.  Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using quickbird satellite imagery , 2008 .

[49]  E. Peterson Estimating cover of an invasive grass (Bromus tectorum) using tobit regression and phenology derived from two dates of Landsat ETM+ data , 2005 .

[50]  David Tilman,et al.  Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass , 2005, Oecologia.

[51]  W. K. Lauenroth,et al.  Inertia in Plant Community Structure: State Changes After Cessation of Nutrient‐Enrichment Stress , 1995 .

[52]  Robert P. Anderson,et al.  VEGETATION-INDEX MODELS PREDICT AREAS VULNERABLE TO PURPLE LOOSESTRIFE (LYTHRUM SALICARIA) INVASION IN KANSAS , 2006 .

[53]  Gregory Asner,et al.  Hyperspectral Remote Sensing of Canopy Chemistry, Physiology, and Biodiversity in Tropical Rainforests , 2008 .

[54]  Roberta E. Martin,et al.  Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR. , 2008 .

[55]  Roberta E. Martin,et al.  Multi-trophic invasion resistance in Hawaii: bioacoustics, field surveys, and airborne remote sensing. , 2007, Ecological applications : a publication of the Ecological Society of America.

[56]  Susan L. Ustin,et al.  Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem , 2008 .

[57]  E. L. Geiger,et al.  Discrimination of invaded and native species sites in a semi‐desert grassland using MODIS multi‐temporal data , 2009 .

[58]  James H. Everitt,et al.  Using Satellite Data to Map False Broomweed (Ericameria austrotexana) Infestations on South Texas Rangelands , 1993, Weed Technology.

[59]  James H. Everitt,et al.  Remote Sensing of Giant Reed with QuickBird Satellite Imagery , 2005 .

[60]  Gregory P. Asner,et al.  Biological invasion alters regional nitrogen‐oxide emissions from tropical rainforests , 2007 .

[61]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[62]  P. Vitousek,et al.  Biological Invasion by Myrica faya Alters Ecosystem Development in Hawaii , 1987, Science.

[63]  C. Tucker,et al.  Satellite remote sensing of rangelands in Botswana II. NOAA AVHRR and herbaceous vegetation , 1986 .

[64]  Ghassem R. Asrar,et al.  Theory and applications of optical remote sensing. , 1989 .

[65]  J. Muller,et al.  New directions in earth observing: Scientific applications of multiangle remote sensing , 1999 .

[66]  Tim Josling,et al.  Plant Invaders. The Threat to Natural Ecosystems , 2004, Biodiversity & Conservation.

[67]  Jeffrey A. Pedelty,et al.  A tamarisk habitat suitability map for the continental United States , 2006 .

[68]  Jesslyn F. Brown,et al.  Measuring phenological variability from satellite imagery , 1994 .

[69]  Jacob T. Mundt,et al.  Hyperspectral data processing for repeat detection of small infestations of leafy spurge , 2005 .

[70]  A. Hastings,et al.  Use of lidar to study changes associated with Spartina invasion in San Francisco bay marshes , 2006 .

[71]  James H. Everitt,et al.  Use of Remote Sensing for Detecting and Mapping Leafy Spurge (Euphorbia esula) , 1995, Weed Technology.

[72]  P. Vitousek,et al.  Biological invasions by exotic grasses, the grass/fire cycle, and global change , 1992 .

[73]  J. A. Schell,et al.  Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor] , 1973 .

[74]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[75]  S. Ustin,et al.  Mapping nonnative plants using hyperspectral imagery , 2003 .

[76]  Bruce W. Pengra,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[77]  Monica G. Turner,et al.  Predicting across scales: Theory development and testing , 1989, Landscape Ecology.

[78]  James W. E. Dickey,et al.  Intriguing World of Weeds , 2000 .

[79]  P. Vitousek,et al.  Remote analysis of biological invasion and biogeochemical change. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[80]  H. Mooney,et al.  Human Domination of Earth’s Ecosystems , 1997, Renewable Energy.

[81]  Roberta E. Martin,et al.  Remote sensing of native and invasive species in Hawaiian forests , 2008 .

[82]  Fuan Tsai,et al.  Spectrally segmented principal component analysis of hyperspectral imagery for mapping invasive plant species , 2007 .

[83]  D. Pimentel,et al.  Environmental and Economic Costs of Nonindigenous Species in the United States , 2000 .

[84]  M. Schlerf,et al.  Remote sensing of forest biophysical variables using HyMap imaging spectrometer data , 2005 .

[85]  James H. Everitt,et al.  Using Spatial Information Technologies to Map Chinese Tamarisk (Tamarix chinensis) Infestations , 1996, Weed Science.

[86]  D. Fuller Remote detection of invasive Melaleuca trees (Melaleuca quinquenervia) in South Florida with multispectral IKONOS imagery , 2005 .

[87]  S. Levin The problem of pattern and scale in ecology , 1992 .

[88]  Peter M. Vitousek,et al.  Biological invasion by Myrica faya in Hawai'i: plant demography, nitrogen fixation, ecosystem effects , 1989 .

[89]  P. K Varshney,et al.  Advanced image processing techniques for remotely sensed hyperspectral data : with 128 figures and 30 tables , 2004 .

[90]  Susan L. Ustin,et al.  Habitat suitability modelling of an invasive plant with advanced remote sensing data , 2009 .

[91]  C. G. Bachman Laser radar systems and techniques , 1979 .

[92]  Roberta E. Martin,et al.  Carnegie Airborne Observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems , 2007 .

[93]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[94]  A. Goetz,et al.  Terrestrial imaging spectroscopy , 1988 .