Additional constraints on quasi-exactly solvable systems

[1]  Toshiaki Tanaka Corrigendum to “sl(M+1)sl(M+1) construction of quasi-solvable quantum M-body systems” [Ann. Phys. 309 (2004) 239–280] , 2005 .

[2]  A. Turbiner Quasi-Exactly Solvable Hamiltonians related to Root Spaces , 2005 .

[3]  A. Turbiner,et al.  Solvability of the Hamiltonians Related to Exceptional Root Spaces: Rational Case , 2004, hep-th/0407204.

[4]  R. Milson,et al.  Quasi-Exact Solvability and the direct approach to invariant subspaces , 2004, nlin/0401030.

[5]  Sergey M. Klishevich Quasi-exact solvability and intertwining relations , 2004, hep-th/0410064.

[6]  C. Bender,et al.  Erratum: Complex Extension of Quantum Mechanics [Phys. Rev. Lett.89, 270401 (2002)] , 2004 .

[7]  Toshiaki Tanaka sl(M+1) construction of quasi-solvable quantum M-body systems , 2003, hep-th/0306174.

[8]  A. Andrianov,et al.  Nonlinear supersymmetry in quantum mechanics: Algebraic properties and differential representation , 2003, hep-th/0301062.

[9]  C. Bender,et al.  Complex extension of quantum mechanics. , 2002, Physical review letters.

[10]  M. Plyushchay,et al.  Nonlinear holomorphic supersymmetry on Riemann surfaces , 2002, hep-th/0202077.

[11]  M. Plyushchay,et al.  Nonlinear holomorphic supersymmetry, Dolan-Grady relations and Onsager algebra , 2001, hep-th/0112158.

[12]  Toshiaki Tanaka,et al.  sl(2) construction of type A N-fold supersymmetry , 2001, hep-th/0107048.

[13]  Toshiaki Tanaka,et al.  N-fold Supersymmetry in Quantum Mechanics - General Formalism - , 2001, quant-ph/0106037.

[14]  M. Plyushchay,et al.  Nonlinear supersymmetry on the plane in magnetic field and quasi-exactly solvable systems , 2001, hep-th/0105135.

[15]  Miloslav Znojil Pöschl–Teller paradoxes , 2001, math-ph/0102034.

[16]  M. Plyushchay,et al.  Nonlinear supersymmetry, quantum anomaly and quasi-exactly solvable systems , 2000, hep-th/0012023.

[17]  M. Znojil,et al.  Complex Calogero model with real energies , 2000, quant-ph/0010087.

[18]  Peter J. Olver,et al.  Invariant modules and the reduction of nonlinear partial differential equations to dynamical systems , 1999, solv-int/9904014.

[19]  M. Shifman,et al.  A QUASI-EXACTLY SOLVABLE N-BODY PROBLEM WITH THE sl(N+1) ALGEBRAIC STRUCTURE , 1998, hep-th/9812157.

[20]  C. Bender,et al.  PT-symmetric quantum mechanics , 1998, 2312.17386.

[21]  H. Aoyama,et al.  Valley views: instantons, large order behaviors, and supersymmetry , 1998, hep-th/9808034.

[22]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[23]  A. Capella,et al.  SOLVABILITY OF THE G2 INTEGRABLE SYSTEM , 1997, solv-int/9707005.

[24]  A. Minzoni,et al.  Quasi-Exactly-Solvable Many-Body Problems , 1996, hep-th/9606092.

[25]  A. Ushveridze Quasi-Exactly Solvable Models in Quantum Mechanics , 1994 .

[26]  G. Post,et al.  CLASSIFICATION OF LINEAR DIFFERENTIAL OPERATORS WITH AN INVARIANT SUBSPACE OF MONOMIALS , 1993, funct-an/9307001.

[27]  Peter J. Olver,et al.  Normalizability of one-dimensional quasi-exactly solvable Schrödinger operators , 1993 .

[28]  A. Andrianov,et al.  Higher derivative supersymmetry and the Witten index , 1993 .

[29]  A. Turbiner Lie-algebras and linear operators with invariant subspaces , 1993, funct-an/9301001.

[30]  A. Turbiner Lie-algebraic approach to the theory of polynomial solutions. I. Ordinary differential equations and , 1992, hep-th/9209079.

[31]  P. Olver,et al.  Quasi-exactly solvable Lie algebras of differential operators in two complex variables , 1991 .

[32]  Alexander V. Turbiner,et al.  Quantal problems with partial algebraization of the spectrum , 1989 .

[33]  M. Shifman NEW FINDINGS IN QUANTUM MECHANICS (PARTIAL ALGEBRAIZATION OF THE SPECTRAL PROBLEM) , 1989 .

[34]  A. Turbiner Quasi-exactly-solvable problems andsl(2) algebra , 1988 .