Computation and mutagenesis suggest a right‐handed structure for the synaptobrevin transmembrane dimer

Biological membrane fusion involves a highly precise and ordered set of protein–protein interactions. Synaptobrevin is a key player in this process. Mutagenesis studies of its single transmembrane segment suggest that it dimerizes in a sequence specific manner. Using the computational methods developed for the successful structure prediction of the glycophorin A transmembrane dimer, we have calculated a structural model for the synaptobrevin dimer. Our computational search yields a well‐populated cluster of right‐handed structures consistent with the experimentally determined dimerization motif. The three‐dimensional structure contains an interface formed primarily by leucine and isoleucine side‐chain atoms and has no interhelical hydrogen bonds. The model is the first three‐dimensional picture of the synaptobrevin transmembrane dimer and provides a basis for further focused experimentation on its structure and association thermodynamics. Proteins 2001;45:313–317. © 2001 Wiley‐Liss, Inc.

[1]  J. Thornton,et al.  Satisfying hydrogen bonding potential in proteins. , 1994, Journal of molecular biology.

[2]  Roland L. Dunbrack,et al.  Bayesian statistical analysis of protein side‐chain rotamer preferences , 1997, Protein science : a publication of the Protein Society.

[3]  F. Cohen,et al.  Hydrogen bonds involving sulfur atoms in proteins , 1991, Proteins.

[4]  D. Langosch,et al.  Dimerization of the synaptic vesicle protein synaptobrevin (vesicle-associated membrane protein) II depends on specific residues within the transmembrane segment. , 1997, European journal of biochemistry.

[5]  S. O. Smith,et al.  Structural model of the phospholamban ion channel complex in phospholipid membranes. , 1995, Journal of molecular biology.

[6]  S. White,et al.  Membrane protein folding and stability: physical principles. , 1999, Annual review of biophysics and biomolecular structure.

[7]  D. Engelman,et al.  Membrane protein folding and oligomerization: the two-stage model. , 1990, Biochemistry.

[8]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[9]  Roland L. Dunbrack,et al.  Backbone-dependent rotamer library for proteins. Application to side-chain prediction. , 1993, Journal of molecular biology.

[10]  William L. Jorgensen,et al.  Molecular dynamics of proteins with the OPLS potential functions. Simulation of the third domain of silver pheasant ovomucoid in water , 1990 .

[11]  J. Ponder,et al.  Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. , 1987, Journal of molecular biology.

[12]  D. Engelman,et al.  Sequence specificity in the dimerization of transmembrane alpha-helices. , 1992, Biochemistry.

[13]  D. Engelman,et al.  Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching , 1996, Proteins.

[14]  J Deisenhofer,et al.  Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. , 1989, The EMBO journal.

[15]  Michael L. Connolly,et al.  Computation of molecular volume , 1985 .

[16]  Roland L. Dunbrack,et al.  Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. , 1997, Journal of molecular biology.

[17]  D. Langosch,et al.  A Conserved Membrane-spanning Amino Acid Motif Drives Homomeric and Supports Heteromeric Assembly of Presynaptic SNARE Proteins* , 2000, The Journal of Biological Chemistry.

[18]  K. B. Ward,et al.  Occluded molecular surface: Analysis of protein packing , 1995, Journal of molecular recognition : JMR.

[19]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[20]  G. Heijne,et al.  Membrane protein assembly , 1995 .

[21]  James H. Prestegard,et al.  A Transmembrane Helix Dimer: Structure and Implications , 1997, Science.

[22]  S. O. Smith,et al.  Structure of the Transmembrane Cysteine Residues in Phospholamban , 1997, The Journal of Membrane Biology.

[23]  Paul D. Adams,et al.  Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban , 1995, Nature Structural Biology.