Flexible polyimide microelectrode array for in vivo recordings and current source density analysis.

[1]  R. Misra,et al.  Biomaterials , 2008 .

[2]  Siamak Shahidi,et al.  BRAIN RES BULL , 2008 .

[3]  Vadym Gnatkovsky,et al.  Hippocampus-Mediated Activation of Superficial and Deep Layer Neurons in the Medial Entorhinal Cortex of the Isolated Guinea Pig Brain , 2006, The Journal of Neuroscience.

[4]  E. A. Lima,et al.  Thin-film IrOx pH microelectrode for microfluidic-based microsystems. , 2005, Biosensors & bioelectronics.

[5]  P. Renaud,et al.  Partial release and detachment of microfabricated metal and polymer structures by anodic metal dissolution , 2005, Journal of Microelectromechanical Systems.

[6]  J. Fawcett,et al.  The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain , 2004, Neuroscience.

[7]  Arnaud Bertsch,et al.  Polyimide microfluidic devices with integrated nanoporous filtration areas manufactured by micromachining and ion track technology , 2004 .

[8]  Kenneth W. Horch,et al.  Neuroprosthetics theory and practice , 2004 .

[9]  S. J. Kim,et al.  Biocompatibility of polyimide microelectrode array for retinal stimulation , 2004 .

[10]  F. H. Lopes da Silva,et al.  Two reentrant pathways in the hippocampal‐entorhinal system , 2004, Hippocampus.

[11]  C. Holding Lab on a chip , 2004, Genome Biology.

[12]  D. Szarowski,et al.  Brain responses to micro-machined silicon devices , 2003, Brain Research.

[13]  Jerald D. Kralik,et al.  Chronic, multisite, multielectrode recordings in macaque monkeys , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Csicsvari,et al.  Massively parallel recording of unit and local field potentials with silicon-based electrodes. , 2003, Journal of neurophysiology.

[15]  K. Wu,et al.  Increased dendritic excitability in hippocampal ca1 in vivo in the kainic acid model of temporal lobe epilepsy: a study using current source density analysis , 2003, Neuroscience.

[16]  R. Bartesaghi,et al.  Activation of perforant path neurons to field CA1 by hippocampal projections , 2003, Hippocampus.

[17]  G. Abadal,et al.  Electrochemical platinum coatings for improving performance of implantable microelectrode arrays. , 2002, Biomaterials.

[18]  T. Stieglitz,et al.  A biohybrid system to interface peripheral nerves after traumatic lesions: design of a high channel sieve electrode. , 2002, Biosensors & bioelectronics.

[19]  R. Bellamkonda,et al.  Stabilizing electrode-host interfaces: a tissue engineering approach. , 2001, Journal of rehabilitation research and development.

[20]  F. Kloosterman,et al.  Apical and basal orthodromic population spikes in hippocampal CA1 in vivo show different origins and patterns of propagation. , 2001, Journal of neurophysiology.

[21]  Qing Bai,et al.  Single-unit neural recording with active microelectrode arrays , 2001, IEEE Transactions on Biomedical Engineering.

[22]  K. Wu,et al.  Enhanced but fragile inhibition in the dentate gyrus in vivo in the kainic acid model of temporal lobe epilepsy: a study using current source density analysis , 2001, Neuroscience.

[23]  Justin C. Williams,et al.  Flexible polyimide-based intracortical electrode arrays with bioactive capability , 2001, IEEE Transactions on Biomedical Engineering.

[24]  Miguel A. L. Nicolelis,et al.  Actions from thoughts , 2001, Nature.

[25]  E. Valderrama,et al.  Polyimide cuff electrodes for peripheral nerve stimulation , 2000, Journal of Neuroscience Methods.

[26]  F. Kloosterman,et al.  Physiology of the Entorhinal and Perirhinal Projections to the Hippocampus Studied by Current Source Density Analysis , 2000, Annals of the New York Academy of Sciences.

[27]  C. Wilson,et al.  Multiple site silicon-based probes for chronic recordings in freely moving rats: implantation, recording and histological verification , 2000, Journal of Neuroscience Methods.

[28]  J. Fawcett,et al.  The glial scar and central nervous system repair , 1999, Brain Research Bulletin.

[29]  D. Szarowski,et al.  Cerebral Astrocyte Response to Micromachined Silicon Implants , 1999, Experimental Neurology.

[30]  K. J. Canning,et al.  Entorhinal inputs to hippocampal CA1 and dentate gyrus in the rat: a current-source-density study. , 1995, Journal of neurophysiology.

[31]  K. Horch,et al.  Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. , 1993, Journal of biomedical materials research.

[32]  M. Stewart,et al.  Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators , 1993, Brain Research.

[33]  W. Reichert,et al.  Polyimides as biomaterials: preliminary biocompatibility testing. , 1993, Biomaterials.

[34]  D. Edell,et al.  Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex , 1992, IEEE Transactions on Biomedical Engineering.

[35]  B. Shen,et al.  Long-term potentiation induced by patterned stimulation of the commissural pathway to hippocampal CA1 region in freely moving rats , 1992, Neuroscience.

[36]  K. Horch,et al.  A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array , 1991, IEEE Transactions on Biomedical Engineering.

[37]  J. Cronly-Dillon,et al.  Preferential histochemical staining of protoplasmic and fibrous astrocytes in rat CNS with GFAP antibodies using different fixatives , 1990, Brain Research.

[38]  S W Leung,et al.  Potentials evoked by alvear tract in hippocampal CA1 region of rats. II. Spatial field analysis. , 1979, Journal of neurophysiology.

[39]  C. Nicholson,et al.  Experimental optimization of current source-density technique for anuran cerebellum. , 1975, Journal of neurophysiology.

[40]  C. Nicholson,et al.  Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. , 1975, Journal of neurophysiology.

[41]  M. I. Phillips Brain unit activity during behavior , 1973 .

[42]  F. Strumwasser Long-term recording' from single neurons in brain of unrestrained mammals. , 1958, Science.