Categoricity of computable infinitary theories
暂无分享,去创建一个
[1] Harvey M. Friedman,et al. A Borel reductibility theory for classes of countable structures , 1989, Journal of Symbolic Logic.
[2] H. Keisler. Model theory for infinitary logic , 1971 .
[3] Michael Makkai,et al. An example concerning Scott heights , 1981, Journal of Symbolic Logic.
[4] Ivan N. Soskov. Intrinsically Hyperarithmetical Sets , 1996, Math. Log. Q..
[5] Julia F. Knight,et al. Computable Structures of Rank , 2010, J. Math. Log..
[6] Arkadii M. Slinko,et al. Degree spectra and computable dimensions in algebraic structures , 2002, Ann. Pure Appl. Log..
[7] M. Nadel,et al. Scott sentences and admissible sets , 1974 .
[8] Yi Zhang,et al. Advances in Logic , 2007 .
[9] Joseph Harrison,et al. Recursive pseudo-well-orderings , 1968 .
[10] Julia F. Knight,et al. Computable trees of Scott rank ω1CK, and computable approximation , 2006, Journal of Symbolic Logic.
[11] R. Shore,et al. Π11 relations and paths through , 2004, Journal of Symbolic Logic.
[12] M. Karoubi. K-Theory: An Introduction , 1978 .
[13] D. Marker. Model theory : an introduction , 2002 .
[14] Jessica Millar,et al. Atomic models higher up , 2008, Ann. Pure Appl. Log..