A reduced-order model for heat transfer in multiphase flow and practical aspects of the proper orthogonal decomposition

Abstract This paper discusses two practical aspects of reduced-order models (ROMs) based on proper orthogonal decomposition (POD) and presents the derivation and implementation of a ROM for non-isothermal multiphase flow. The POD method calculates basis functions for a reduced-order representation of two-phase flow by calculating the eigenvectors of an autocorrelation matrix composed of snapshots of the flow. The flow is divided into transient and quasi-steady regions and two methods are shown for clustering snapshots in the transient region. Both methods reduce error as compared to the constant sampling case. The ROM for non-isothermal flow was developed using numerical results from a full-order computational fluid dynamics model for a two-dimensional non-isothermal fluidized bed. Excellent agreement is shown between the reduced- and full-order models. The composition of the autocorrelation matrix is also considered for an isothermal case. An approach treating field variables separately is shown to produce less error than a coupled approach.

[1]  Kenneth C. Hall,et al.  A Reduced Order Model of Unsteady Flows in Turbomachinery , 1995 .

[2]  Alain Dervieux,et al.  Reduced-order modeling of transonic flows around an airfoil submitted to small deformations , 2011, J. Comput. Phys..

[3]  E. Koschmieder Taylor vortices between eccentric cylinders , 1976 .

[4]  Yanjie Zhou,et al.  A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation , 2009 .

[5]  Rémi Bourguet,et al.  Capturing transition features around a wing by reduced-order modeling based on compressible Navier-Stokes equations , 2009 .

[6]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[7]  M. Kirby,et al.  A proper orthogonal decomposition of a simulated supersonic shear layer , 1990 .

[8]  Wei Shyy,et al.  Reduced-order description of fluid flow with moving boundaries by proper orthogonal decomposition , 2005 .

[9]  J. Weller,et al.  Numerical methods for low‐order modeling of fluid flows based on POD , 2009 .

[10]  A. Velazquez,et al.  Robust reduced order modeling of heat transfer in a back step flow , 2009 .

[11]  X. Gloerfelt Compressible proper orthogonal decomposition/Galerkin reduced-order model of self-sustained oscillations in a cavity , 2008 .

[12]  Erroll L. Eaton,et al.  Low-dimensional azimuthal characteristics of suddenly expanding axisymmetric flows , 2006, Journal of Fluid Mechanics.

[13]  Yogendra Joshi,et al.  Multi-parameter model reduction in multi-scale convective systems , 2010 .

[14]  H. Park,et al.  An efficient method of solving the Navier–Stokes equations for flow control , 1998 .

[15]  Thomas A. Brenner,et al.  Practical Aspects of the Implementation of Proper Orthogonal Decomposition , 2009 .

[16]  Earl H. Dowell,et al.  REDUCED-ORDER MODELS OF UNSTEADY TRANSONIC VISCOUS FLOWS IN TURBOMACHINERY , 2000 .

[17]  Virginia Kalb,et al.  An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models , 2007 .

[18]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[19]  David J. Lucia,et al.  Reduced order modeling of a two-dimensional flow with moving shocks , 2003 .

[20]  A.C.P.M. Backx,et al.  Application of proper orthogonal decomposition to reduce detailed CFD models of glass furnaces and forehearths , 2006 .

[21]  Jean-Antoine Désidéri,et al.  Stability Properties of POD–Galerkin Approximations for the Compressible Navier–Stokes Equations , 2000 .

[22]  Lawrence Ukeiley,et al.  Low-dimensional description of variable density flows , 2001 .

[23]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[24]  Charles E. Tinney,et al.  Low-dimensional characteristics of a transonic jet. Part 1. Proper orthogonal decomposition , 2008, Journal of Fluid Mechanics.

[25]  Madhava Syamlal,et al.  MFIX documentation numerical technique , 1998 .

[26]  M. Syamlal,et al.  MFIX documentation theory guide , 1993 .

[27]  P. Beran,et al.  Reduced-order modeling: new approaches for computational physics , 2004 .

[28]  Hossein Haj-Hariri,et al.  Reduced-Order Modeling of a Heaving Airfoil , 2005 .

[29]  W. Tao,et al.  A Fast and Efficient Method for Predicting Fluid Flow and Heat Transfer Problems , 2008 .

[30]  Thomas A. Brenner,et al.  Augmented proper orthogonal decomposition for problems with moving discontinuities , 2010 .

[31]  Split-domain harmonic balance solutions to Burger's equation for large-amplitude disturbances , 2003 .

[32]  Paul G. A. Cizmas,et al.  Reduced-Order Modeling of Unsteady Viscous Flow in a Compressor Cascade , 1998 .

[33]  D. Rempfer,et al.  On Low-Dimensional Galerkin Models for Fluid Flow , 2000 .

[34]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[35]  Yehuda Salu,et al.  Turbulent diffusion from a quasi-kinematical point of view , 1977 .

[36]  Wagdi G. Habashi,et al.  Toward Real-Time Aero-Icing Simulation of Complete Aircraft via FENSAP-ICE , 2010 .

[37]  Thomas A. Brenner,et al.  Acceleration techniques for reduced-order models based on proper orthogonal decomposition , 2008, J. Comput. Phys..

[38]  Yingying Chen,et al.  Uncertainty propagation for effective reduced-order model generation , 2010, Comput. Chem. Eng..

[39]  Zhu Wang,et al.  Artificial viscosity proper orthogonal decomposition , 2011, Math. Comput. Model..

[40]  James R. DeBonis,et al.  Application of Proper Orthogonal Decomposition to a Supersonic Axisymmetric Jet , 2003 .

[41]  Paul G. A. Cizmas,et al.  Proper-Orthogonal Decomposition of Spatio-Temporal Patterns in Fluidized Beds , 2003 .

[42]  Yi-chen Ma,et al.  An error estimate of the proper orthogonal decomposition in model reduction and data compression , 2009 .

[43]  Paul G. A. Cizmas,et al.  Proper Orthogonal Decomposition of Turbine Rotor-Stator Interaction , 2003 .

[44]  David J. Lucia,et al.  Rocket Nozzle Flow Control Using a Reduced-Order Computational Fluid Dynamics Model , 2002 .

[45]  D. Gidaspow Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions , 1994 .

[46]  T. Yuan,et al.  A reduced-order model for a bubbling fluidized bed based on proper orthogonal decomposition , 2005, Comput. Chem. Eng..

[47]  Charbel Farhat,et al.  Recent Advances in Reduced-Order Modeling and Application to Nonlinear Computational Aeroelasticity , 2008 .

[48]  Paul I. King,et al.  POD-Based reduced-order models with deforming grids , 2003 .

[49]  H. Gunes Low-dimensional modeling of non-isothermal twin-jet flow , 2002 .

[50]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[51]  R. Murray,et al.  Model reduction for compressible flows using POD and Galerkin projection , 2004 .

[52]  Linda R. Petzold,et al.  Error Estimation for Reduced-Order Models of Dynamical Systems , 2005, SIAM J. Numer. Anal..

[53]  Adnan Qamar,et al.  Steady supersonic flow-field predictions using proper orthogonal decomposition technique , 2009 .

[54]  Earl H. Dowell,et al.  Dynamics of Very High Dimensional Systems , 2003 .

[55]  Matthew F. Barone,et al.  Stable Galerkin reduced order models for linearized compressible flow , 2009, J. Comput. Phys..

[56]  Kenneth C. Hall,et al.  EIGENANALYSIS OF UNSTEADY FLOW ABOUT AIRFOILS, CASCADES, AND WINGS , 1994 .

[57]  Earl H. Dowell,et al.  Reduced order models in unsteady aerodynamics , 1999 .

[58]  G. Karniadakis,et al.  A spectral viscosity method for correcting the long-term behavior of POD models , 2004 .

[59]  R. Murray,et al.  On the choice of norm for modeling compressible flow dynamics at reduced-order using the POD , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[60]  William H. Green,et al.  Using adaptive proper orthogonal decomposition to solve the reaction--diffusion equation , 2007 .

[61]  Philip S. Beran,et al.  Applications of multi-POD to a pitching and plunging airfoil , 2005, Math. Comput. Model..

[62]  Clarence W. Rowley,et al.  Dynamical Models for Control of Cavity Oscillations , 2001 .

[63]  Paul G. A. Cizmas,et al.  Eigenmode Analysis of Unsteady Viscous Flows in Turbomachinery Cascades , 1998 .

[64]  Brian T. Helenbrook,et al.  Proper orthogonal decomposition and incompressible flow: An application to particle modeling , 2007 .

[65]  John L. Lumley,et al.  Low-dimensional models for flows with density fluctuations , 1997 .

[66]  S. Arunajatesan,et al.  Development of low dimensional models for control of compressible flows , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[67]  Michael B. Giles,et al.  Stability Analysis of a Galerkin/Runge-Kutta Navier-Stokes Discretisation on Unstructured Tetrahedral Grids , 1997 .

[68]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.