Analysis of space–time discontinuous Galerkin method for nonlinear convection–diffusion problems

The paper presents the theory of the discontinuous Galerkin finite element method for the space–time discretization of a nonstationary convection–diffusion initial-boundary value problem with nonlinear convection and linear diffusion. The problem is not singularly perturbed with dominating convection. The discontinuous Galerkin method is applied separately in space and time using, in general, different space grids on different time levels and different polynomial degrees p and q in space and time dicretization. In the space discretization the nonsymmetric, symmetric and incomplete interior and boundary penalty (NIPG, SIPG, IIPG) approximation of diffusion terms is used. The paper is concerned with the proof of error estimates in “L2(L2)”- and “DG”-norm formed by the “L2(H1)”-seminorm and penalty terms. A special technique based on the use of the Gauss–Radau interpolation and numerical integration has been used for the derivation of an abstract error estimate. In the “DG”-norm the error estimates are optimal with respect to the size of the space grid. They are optimal with respect to the time step, if the Dirichlet boundary condition has behaviour in time as a polynomial of degree ≤ q.

[1]  Vít Dolejší,et al.  Error Estimates of the Discontinuous Galerkin Method for Nonlinear Nonstationary Convection-Diffusion Problems , 2005 .

[2]  Ilaria Perugia,et al.  Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .

[3]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[4]  J. V. D. Vegt,et al.  Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .

[5]  T. Roubíček Nonlinear partial differential equations with applications , 2005 .

[6]  A. Ralston A first course in numerical analysis , 1965 .

[7]  B. Rivière,et al.  A Discontinuous Galerkin Method Applied to Nonlinear Parabolic Equations , 2000 .

[8]  Andrea Toselli,et al.  HP DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE STOKES PROBLEM , 2002 .

[9]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[10]  Clint Dawson,et al.  A Discontinuous Galerkin Method for Three-Dimensional Shallow Water Equations , 2005, J. Sci. Comput..

[11]  Jérôme Jaffré,et al.  CONVERGENCE OF THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS , 1995 .

[12]  Bernardo Cockburn,et al.  A Priori Error Estimates for Numerical Methods for Scalar Conservation Laws Part III: Multidimensional Flux-Splitting Monotone Schemes on Non-Cartesian Grids , 1998 .

[13]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[14]  Bernardo Cockburn,et al.  A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach , 1996, Math. Comput..

[15]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[16]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[17]  M. Fowler,et al.  Function Spaces , 2022 .

[18]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[19]  Vít Dolejší,et al.  Analysis of semi-implicit DGFEM for nonlinear convection–diffusion problems on nonconforming meshes ☆ , 2007 .

[20]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[21]  Charalambos Makridakis,et al.  A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..

[22]  Charalambos Makridakis,et al.  Galerkin time-stepping methods for nonlinear parabolic equations , 2004 .

[23]  E. Süli,et al.  Discontinuous hp-finite element methods for advection-diffusion problems , 2000 .

[24]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[25]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[26]  Vít Dolejší,et al.  A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow , 2004 .

[27]  Dominik Schötzau,et al.  An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .

[28]  Dominik Schötzau Abstract of the PhD thesis: “hp-DGFEM for parabolic evolution problems – applications to diffusion and viscous incompressible fluid flow” , 2000 .

[29]  Andrea Toselli,et al.  Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..

[30]  Miloslav Feistauer,et al.  On a robust discontinuous Galerkin technique for the solution of compressible flow , 2007, J. Comput. Phys..

[31]  Vít Dolejsí,et al.  Analysis of a BDF–DGFE scheme for nonlinear convection–diffusion problems , 2008, Numerische Mathematik.

[32]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[33]  C. Schwab,et al.  A finite volume discontinuous Galerkin scheme¶for nonlinear convection–diffusion problems , 2002 .

[34]  Miloslav Feistauer,et al.  Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems , 2004, J. Num. Math..

[35]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[36]  Donald Estep,et al.  The discontinuous Galerkin method for semilinear parabolic problems , 1993 .

[37]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[38]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[39]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[40]  J. Tinsley Oden,et al.  A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .

[41]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[42]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[43]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[44]  V. Dolejší,et al.  Semi-Implicit Interior Penalty Discontinuous Galerkin Methods for Viscous Compressible Flows , 2008 .

[45]  Bernardo Cockburn,et al.  The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .

[46]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[47]  Vidar Thomée,et al.  Single step Galerkin approximations for parabolic problems , 1977 .

[48]  Bernardo Cockburn,et al.  A priori error estimates for numerical methods for scalar conservation laws. Part II : flux-splitting monotone schemes on irregular Cartesian grids , 1997, Math. Comput..

[49]  Miloslav Feistauer,et al.  Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems , 2007 .

[50]  M. Feistauer,et al.  Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems , 2005 .

[51]  Vít Dolejší,et al.  On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers , 2007 .

[52]  Dominik Schötzau,et al.  hp-DGFEM for parabolic evolution problems , 1999 .

[53]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[54]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[55]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[56]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[57]  Bo Dong,et al.  Optimal Convergence of the Original DG Method for the Transport-Reaction Equation on Special Meshes , 2008, SIAM J. Numer. Anal..

[58]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[59]  Mary F. Wheeler,et al.  L2(H1 Norm A PosterioriError Estimation for Discontinuous Galerkin Approximations of Reactive Transport Problems , 2005, J. Sci. Comput..

[60]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.