Compositions of linear functions and applications to hashing

Abstract Cayley hash functions are based on a simple idea of using a pair of (semi)group elements, A and B, to hash the 0 and 1 bit, respectively, and then to hash an arbitrary bit string in the natural way, by using multiplication of elements in the (semi)group. In this paper, we focus on hashing with linear functions of one variable over 𝔽 p ${\mathbb{F}_{p}}$ . The corresponding hash functions are very efficient. In particular, we show that hashing a bit string of length n with our method requires, in general, at most 2 ⁢ n ${2n}$ multiplications in 𝔽 p ${\mathbb{F}_{p}}$ , but with particular pairs of linear functions that we suggest, one does not need to perform any multiplications at all. We also give explicit lower bounds on the length of collisions for hash functions corresponding to these particular pairs of linear functions over 𝔽 p ${\mathbb{F}_{p}}$ .

[1]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[2]  Gérard D. Cohen,et al.  Proceedings of the First French-Israeli Workshop on Algebraic Coding , 1991 .

[3]  Vladimir Shpilrain,et al.  Navigating in the Cayley graph of SL2(Fp) and applications to hashing , 2014, IACR Cryptol. ePrint Arch..

[4]  Ron Steinfeld,et al.  VSH, an Efficient and Provable Collision Resistant Hash Function , 2006, IACR Cryptol. ePrint Arch..

[5]  Boaz Tsaban,et al.  $${\text {SL}}_2$$SL2 homomorphic hash functions: worst case to average case reduction and short collision search , 2016, Des. Codes Cryptogr..

[6]  Jean-Jacques Quisquater,et al.  Rubik's for cryptographers , 2011, IACR Cryptol. ePrint Arch..

[7]  Boaz Tsaban,et al.  Short collision search in arbitrary SL2 homomorphic hash functions , 2013, IACR Cryptol. ePrint Arch..

[8]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[9]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[10]  Juhani Karhumäki,et al.  On the Undecidability of Freeness of Matrix Semigroups , 1999, Int. J. Algebra Comput..

[11]  E. LESTER SMITH,et al.  AND OTHERS , 2005 .

[12]  Gilles Zémor,et al.  Hashing with SL_2 , 1994, CRYPTO.

[13]  Markus Grassl,et al.  Cryptanalysis of the Tillich–Zémor Hash Function , 2010, Journal of Cryptology.

[14]  Jean-Jacques Quisquater,et al.  Preimages for the Tillich-Zémor Hash Function , 2010, Selected Areas in Cryptography.

[15]  Gilles Zémor,et al.  Group-theoretic hash functions , 1993, Algebraic Coding.

[16]  Christophe Petit,et al.  On graph-based cryptographic hash functions , 2009 .