Analysis and Synthesis of Robust Control Systems Using Linear Parameter Dependent Lyapunov Functions

This note provides sufficient robust stability conditions for continuous time polytopic systems. They are obtained from the Frobenius-Perron Theorem applied to the time derivative of a linear parameter dependent Lyapunov function and are expressed in terms of linear matrix inequalities (LMI). They contain as special cases, various sufficient stability conditions available in the literature to date. As a natural generalization, the determination of a guaranteed H2 cost is addressed. A new gain parametrization is introduced in order to make possible the state feedback robust control synthesis using parameter dependent Lyapunov functions through linear matrix inequalities. Numerical examples are included for illustration

[1]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[2]  Liu Hsu,et al.  LMI characterization of structural and robust stability , 1998, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[3]  Jiang Qian,et al.  Robust partial eigenvalue assignment problem for the second-order system , 2005 .

[4]  Alexandre Trofino,et al.  Biquadratic stability of uncertain linear systems , 2001, IEEE Trans. Autom. Control..

[5]  F. Fairman Introduction to dynamic systems: Theory, models and applications , 1979, Proceedings of the IEEE.

[6]  Jaroslav Kautsky,et al.  Robust multiple eigenvalue assignment by state feedback in linear systems , 1985 .

[7]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[8]  Pierre-Alexandre Bliman,et al.  A Convex Approach to Robust Stability for Linear Systems with Uncertain Scalar Parameters , 2003, SIAM J. Control. Optim..

[9]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[10]  Pedro Luis Dias Peres,et al.  An LMI condition for the robust stability of uncertain continuous-time linear systems , 2002, IEEE Trans. Autom. Control..

[11]  B. Datta Partial Eigenvalue Assignment in Linear Systems : Existence , Uniqueness and Numerical Solution , 2002 .

[12]  N. Nichols,et al.  Robust pole assignment in linear state feedback , 1985 .

[13]  Rubens H. Korogui,et al.  MATRIX QUADRATIC POLYNOMIALS WITH APPLICATION TO ROBUST STABILITY ANALYSIS , 2006 .

[14]  S. P. Bhattacharyya,et al.  Robust and Well Conditioned Eigenstructure Assignment via Sylvester's Equation , 1982, 1982 American Control Conference.

[15]  Jaroslav Kautsky,et al.  Robust Eigenstructure Assignment in Quadratic Matrix Polynomials: Nonsingular Case , 2001, SIAM J. Matrix Anal. Appl..

[16]  Pedro Luis Dias Peres,et al.  An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, IEEE Trans. Autom. Control..

[17]  Y. Saad Projection and deflation method for partial pole assignment in linear state feedback , 1988 .

[18]  S. Bhattacharyya,et al.  Pole assignment via Sylvester's equation , 1982 .

[19]  Wen-Wei Lin,et al.  Partial pole assignment for the vibrating system with aerodynamic effect , 2004, Numer. Linear Algebra Appl..

[20]  Graziano Chesi,et al.  Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.

[21]  C. Scherer,et al.  New robust stability and performance conditions based on parameter dependent multipliers , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[22]  A. Tits,et al.  Globally convergent algorithms for robust pole assignment by state feedback , 1996, IEEE Trans. Autom. Control..

[23]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[24]  András Varga Robust and minimum norm pole assignment with periodic state feedback , 2000, IEEE Trans. Autom. Control..

[25]  Nancy Nichols Robustness in partial pole placement , 1987 .

[26]  Pierre Apkarian,et al.  Parameterized LMIs in Control Theory , 2000, SIAM J. Control. Optim..

[27]  Wen-Wei Lin,et al.  Pole Assignment for a Vibrating System with Aerodynamic Effect , 2004, SIAM J. Control. Optim..

[28]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[29]  A. Varga Robust pole assignment techniques via state feedback , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[30]  J. Lasserre,et al.  On parameter-dependent Lyapunov functions for robust stability of linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).