CGKRK-modified nanoparticles for dual-targeting drug delivery to tumor cells and angiogenic blood vessels.

[1]  E. Ruoslahti,et al.  Correction for Agemy et al., Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma , 2014, Proceedings of the National Academy of Sciences.

[2]  Q. Lu,et al.  Nanoparticle-mediated drug delivery to tumor neovasculature to combat P-gp expressing multidrug resistant cancer. , 2013, Biomaterials.

[3]  Quanyin Hu,et al.  Glioma therapy using tumor homing and penetrating peptide-functionalized PEG-PLA nanoparticles loaded with paclitaxel. , 2013, Biomaterials.

[4]  Q. Lu,et al.  The use of nanoparticulate delivery systems in metronomic chemotherapy. , 2013, Biomaterials.

[5]  Jijin Gu,et al.  Solid tumor penetration by integrin-mediated pegylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel. , 2013, Biomaterials.

[6]  Asher Mullard 2012 FDA drug approvals , 2013, Nature Reviews Drug Discovery.

[7]  Jie Shen,et al.  Potent retro-inverso D-peptide for simultaneous targeting of angiogenic blood vasculature and tumor cells. , 2013, Bioconjugate chemistry.

[8]  Jennifer I. Hare,et al.  Targeting combinations of liposomal drugs to both tumor vasculature cells and tumor cells for the treatment of HER2-positive breast cancer , 2013, Journal of drug targeting.

[9]  F. Shojaei,et al.  Anti-angiogenesis therapy in cancer: current challenges and future perspectives. , 2012, Cancer letters.

[10]  Y. Yoshioka,et al.  Optimization and internalization mechanisms of PEGylated adenovirus vector with targeting peptide for cancer gene therapy. , 2012, Biomacromolecules.

[11]  P. Carmeliet,et al.  SnapShot: Tumor Angiogenesis , 2012, Cell.

[12]  M. Mannelli,et al.  Xenograft models for preclinical drug testing: Implications for adrenocortical cancer , 2012, Molecular and Cellular Endocrinology.

[13]  Quanyin Hu,et al.  Preparation and characterization of paclitaxel-loaded DSPE-PEG-liquid crystalline nanoparticles (LCNPs) for improved bioavailability. , 2012, International journal of pharmaceutics.

[14]  E. Ruoslahti,et al.  Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma , 2011, Proceedings of the National Academy of Sciences.

[15]  Holger Gerhardt,et al.  Basic and Therapeutic Aspects of Angiogenesis , 2011, Cell.

[16]  Jun Fang,et al.  The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. , 2011, Advanced drug delivery reviews.

[17]  Robert S. Kerbel,et al.  Antiangiogenic therapy: impact on invasion, disease progression, and metastasis , 2011, Nature Reviews Clinical Oncology.

[18]  J. Christensen,et al.  HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. , 2010, Cancer research.

[19]  L. Kunz-Schughart,et al.  Multicellular tumor spheroids: an underestimated tool is catching up again. , 2010, Journal of biotechnology.

[20]  N. Ferrara,et al.  Tumor and stromal pathways mediating refractoriness/resistance to anti-angiogenic therapies. , 2009, Trends in pharmacological sciences.

[21]  Y. Meng,et al.  G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models , 2009, Proceedings of the National Academy of Sciences.

[22]  John M L Ebos,et al.  Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. , 2009, Cancer cell.

[23]  Masahiro Inoue,et al.  Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. , 2009, Cancer cell.

[24]  I. Kasman,et al.  PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. , 2009, Cancer cell.

[25]  N. Ferrara,et al.  Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies. , 2008, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[26]  L. Ellis,et al.  VEGF-targeted therapy: mechanisms of anti-tumour activity , 2008, Nature Reviews Cancer.

[27]  D. Hanahan,et al.  Modes of resistance to anti-angiogenic therapy , 2008, Nature Reviews Cancer.

[28]  Eric Pridgen,et al.  Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles , 2008, Molecular pharmaceutics.

[29]  Leaf Huang,et al.  Pharmacokinetics and biodistribution of nanoparticles. , 2008, Molecular pharmaceutics.

[30]  G. Fuh,et al.  Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells , 2007, Nature Biotechnology.

[31]  E. Ruoslahti,et al.  Molecular changes in the vasculature of injured tissues. , 2007, The American journal of pathology.

[32]  E. Rock,et al.  Approval Summary: Sunitinib for the Treatment of Imatinib Refractory or Intolerant Gastrointestinal Stromal Tumors and Advanced Renal Cell Carcinoma , 2007, Clinical Cancer Research.

[33]  Apurva A Desai,et al.  Sorafenib in advanced clear-cell renal-cell carcinoma. , 2007, The New England journal of medicine.

[34]  R. Figlin,et al.  Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. , 2007, The New England journal of medicine.

[35]  R. Pazdur,et al.  Sorafenib for the Treatment of Advanced Renal Cell Carcinoma , 2006, Clinical Cancer Research.

[36]  Chiara Brignole,et al.  Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. , 2006, Cancer research.

[37]  I. Tannock,et al.  Drug penetration in solid tumours , 2006, Nature Reviews Cancer.

[38]  E. Sausville,et al.  Contributions of human tumor xenografts to anticancer drug development. , 2006, Cancer research.

[39]  Peter Carmeliet,et al.  Angiogenesis in life, disease and medicine , 2005, Nature.

[40]  Oriol Casanovas,et al.  Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. , 2005, Cancer cell.

[41]  J. Berlin,et al.  Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. , 2004, The New England journal of medicine.

[42]  A. Maier,et al.  Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. , 2004, European journal of cancer.

[43]  L. Kèlland,et al.  Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. , 2004, European journal of cancer.

[44]  Erkki Ruoslahti,et al.  Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. , 2003, Cancer cell.

[45]  Eric Vives,et al.  Cell-penetrating Peptides , 2003, The Journal of Biological Chemistry.

[46]  J. Folkman Role of angiogenesis in tumor growth and metastasis. , 2002, Seminars in oncology.

[47]  P. Carmeliet,et al.  Angiogenesis in cancer and other diseases , 2000, Nature.

[48]  C. Davies,et al.  Comparison of extracellular matrix in human osteosarcomas and melanomas growing as xenografts, multicellular spheroids, and monolayer cultures. , 1997, Anticancer research.

[49]  J. Folkman,et al.  The role of angiogenesis in tumor growth. , 1992, Seminars in cancer biology.

[50]  J. Folkman,et al.  Anti‐Angiogenesis: New Concept for Therapy of Solid Tumors , 1972, Annals of surgery.

[51]  J. Folkman,et al.  Tumor angiogenesis: a quantitative method for histologic grading. , 1972, Journal of the National Cancer Institute.

[52]  Quanyin Hu,et al.  PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. , 2013, Biomaterials.

[53]  Qiang Zhang,et al.  Anti-tumor and anti-angiogenic effect of metronomic cyclic NGR-modified liposomes containing paclitaxel. , 2013, Biomaterials.

[54]  Quanyin Hu,et al.  F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyp-1 peptide for anti-glioma drug delivery. , 2013, Biomaterials.

[55]  G. Sledge,et al.  Can tumor angiogenesis be inhibited without resistance? , 2005, EXS.

[56]  M. Blagosklonny,et al.  Antiangiogenic therapy and tumor progression. , 2004, Cancer cell.

[57]  V. V. van Hinsbergh,et al.  Angiogenesis and anti-angiogenesis: perspectives for the treatment of solid tumors. , 1999, Annals of oncology : official journal of the European Society for Medical Oncology.