Evolutionary Visual Exploration: Evaluation With Expert Users

We present an Evolutionary Visual Exploration (EVE) system that combines visual analytics with stochastic optimisation to aid the exploration of multidimensional datasets characterised by a large number of possible views or projections. Starting from dimensions whose values are automatically calculated by a PCA, an interactive evolutionary algorithm progressively builds (or evolves) non‐trivial viewpoints in the form of linear and non‐linear dimension combinations, to help users discover new interesting views and relationships in their data. The criteria for evolving new dimensions is not known a priori and are partially specified by the user via an interactive interface: (i) The user selects views with meaningful or interesting visual patterns and provides a satisfaction score. (ii) The system calibrates a fitness function (optimised by the evolutionary algorithm) to take into account the user input, and then calculates new views. Our method leverages automatic tools to detect interesting visual features and human interpretation to derive meaning, validate the findings and guide the exploration without having to grasp advanced statistical concepts. To validate our method, we built a prototype tool (EvoGraphDice) as an extension of an existing scatterplot matrix inspection tool, and conducted an observational study with five domain experts. Our results show that EvoGraphDice can help users quantify qualitative hypotheses and try out different scenarios to dynamically transform their data. Importantly, it allowed our experts to think laterally, better formulate their research questions and build new hypotheses for further investigation.

[1]  J. Friedman Exploratory Projection Pursuit , 1987 .

[2]  Ben Shneiderman,et al.  A Rank-by-Feature Framework for Interactive Exploration of Multidimensional Data , 2005, Inf. Vis..

[3]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[4]  Jacques Lévy Véhel,et al.  The fitness map scheme: application to interactive multifractal image denoising , 2005, 2005 IEEE Congress on Evolutionary Computation.

[5]  S. Klinke,et al.  Exploratory Projection Pursuit , 1995 .

[6]  Enrico Bertini,et al.  Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[7]  Helwig Hauser,et al.  Interactive Visual Analysis Supporting Design, Tuning, and Optimization of Diesel Engine Injection , 2011 .

[8]  Jonathon Shlens,et al.  A Tutorial on Principal Component Analysis , 2014, ArXiv.

[9]  Hideyuki Takagi New Topics from Recent Interactive Evolutionary Computation Researches , 2008, KES.

[10]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[11]  Hitoshi Iba,et al.  Interactive evolutionary computation , 2009, New Generation Computing.

[12]  Riccardo Poli,et al.  Genetic Programming with User-Driven Selection : Experiments on the Evolution of Algorithms for Image Enhancement , 1997 .

[13]  M. Sheelagh T. Carpendale,et al.  Evaluating Information Visualizations , 2008, Information Visualization.

[14]  Chris North,et al.  An insight-based methodology for evaluating bioinformatics visualizations , 2005, IEEE Transactions on Visualization and Computer Graphics.

[15]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[16]  Daniel Asimov,et al.  The grand tour: a tool for viewing multidimensional data , 1985 .

[17]  Pierre Dragicevic,et al.  Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[18]  Xavier Llorà,et al.  Analyzing active interactive genetic algorithms using visual analytics , 2006, GECCO '06.

[19]  Evelyne Lutton,et al.  EvoGraphDice: Interactive evolution for visual analytics , 2012, 2012 IEEE Congress on Evolutionary Computation.

[20]  David S. Ebert,et al.  Visualization and computer graphics , 2007 .

[21]  Evelyne Lutton,et al.  Evolution of Fractal Shapes for Artists and Designers , 2006, Int. J. Artif. Intell. Tools.

[22]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[23]  Leland Wilkinson,et al.  Scagnostics Distributions , 2008 .

[24]  Hideyuki Takagi,et al.  Interactive Evolutionary Computation : System Optimization Based on Human Subjective Evaluation , 1998 .

[25]  Riccardo Poli,et al.  A Field Guide to Genetic Programming , 2008 .

[26]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[27]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.

[28]  Pierre Dragicevic,et al.  GraphDice: A System for Exploring Multivariate Social Networks , 2010, Comput. Graph. Forum.

[29]  Hideyuki Takagi,et al.  Visualized IEC: interactive evolutionary computation with multidimensional data visualization , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[30]  Lindsay I. Smith,et al.  A tutorial on Principal Components Analysis , 2002 .

[31]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[32]  Chris North,et al.  Information Visualization , 2008, Lecture Notes in Computer Science.

[33]  Lakhmi C. Jain,et al.  Knowledge-Based Intelligent Information and Engineering Systems , 2004, Lecture Notes in Computer Science.

[34]  Tamara Munzner,et al.  Design Study Methodology: Reflections from the Trenches and the Stacks , 2012, IEEE Transactions on Visualization and Computer Graphics.

[35]  Tamara Munzner,et al.  The four-level nested model revisited: blocks and guidelines , 2012, BELIV '12.

[36]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.