Controlled fabrication of polymer microgels by polymer-analogous gelation in droplet microfluidics

We fabricate thermo-responsive polymer microgels by combining microfluidic pre-gel emulsification with polymer-analogous gelation. This separates the microgel formation from the polymer synthesis; it combines highly controlled microfluidic templating with the great flexibility of preparative polymer chemistry, allowing each to be controlled independently. We produce monodisperse pre-gel droplets from semidilute solutions of photocrosslinkable poly(N-isopropylacrylamide) precursors. The size and morphology of these droplets can be precisely controlled by the microfluidic emulsification, provided the molecular weight of the precursor is limited. Using polymer-analogous gelation rather than monomer chain-growth gelation yields gels with a higher efficiency of crosslinking and a greater homogeneity on nano- and micrometre scales, as determined by oscillatory shear rheology, static light scattering, and optical microscopy. We also demonstrate the applicability of our method to fabricate microgel particles with well-defined concentrations of functional sites.

[1]  Liang-Yin Chu,et al.  Designer emulsions using microfluidics , 2008 .

[2]  R. Gilbert,et al.  Polymerization of acrylamide in solution and inverse emulsion: number molecular weight distribution with chain transfer agent , 1999 .

[3]  Minseok Seo,et al.  Microfluidic consecutive flow-focusing droplet generators. , 2007, Soft matter.

[4]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[5]  Y. Yıldız,et al.  Effects of synthesis‐solvent composition and initiator concentration on the swelling behaviour of poly(N‐isopropylacrylamide) P(NIPAAM), poly(NIPAAM‐co‐dimethyl itaconate), and poly(NIPAAM‐co itaconic acid) gels , 2000 .

[6]  C. Tanford Macromolecules , 1994, Nature.

[7]  大房 健 基礎講座 電気泳動(Electrophoresis) , 2005 .

[8]  Karl-Friedrich Arndt,et al.  Photo cross-linkable poly(N-isopropylacrylamide) copolymers III: micro-fabricated temperature responsive hydrogels , 2003 .

[9]  Jing Liu,et al.  Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[10]  R. Misra,et al.  Biomaterials , 2008 .

[11]  S. Seiffert,et al.  Amine-Functionalized Polyacrylamide for Labeling and Crosslinking Purposes , 2007 .

[12]  Ethan Tumarkin,et al.  Microfluidic generation of microgels from synthetic and natural polymers. , 2009, Chemical Society reviews.

[13]  H. James,et al.  Theory of the Increase in Rigidity of Rubber during Cure , 1947 .

[14]  Gilbert C. Walker,et al.  Exploring Microfluidic Routes to Microgels of Biological Polymers , 2007 .

[15]  T. C. B. McLeish,et al.  Polymer Physics , 2009, Encyclopedia of Complexity and Systems Science.

[16]  G. Whitesides,et al.  Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. , 2005, Angewandte Chemie.

[17]  A. Ravve,et al.  Principles of Polymer Chemistry , 1995 .

[18]  Michael J. Fevola,et al.  Molecular weight control of polyacrylamide with sodium formate as a chain‐transfer agent: Characterization via size exclusion chromatography/multi‐angle laser light scattering and determination of chain‐transfer constant , 2003 .

[19]  H. Adler,et al.  Temperature sensitive polymers based on 2-(dimethyl maleinimido)-N-ethyl-acrylamide: Copolymers with N-isopropylacrylamide , 2000 .

[20]  S. Seiffert,et al.  Hydrogel formation by photocrosslinking of dimethylmaleimide functionalized polyacrylamide , 2007 .

[21]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[22]  D. Kuckling,et al.  Photodimers of N-alkyl-3,4-dimethylmaleimides—Product ratios and reaction mechanism , 2008 .

[23]  Minseok Seo,et al.  Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. , 2005, Journal of the American Chemical Society.

[24]  D. Kuckling,et al.  Preparation of Nanogels with Temperature-Responsive Core and pH-Responsive Arms by Photo-Cross-Linking , 2002 .

[25]  S. Seiffert,et al.  Diffusion of linear macromolecules and spherical particles in semidilute polymer solutions and polymer networks , 2008 .

[26]  T. Nisisako,et al.  Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. , 2005, Soft matter.

[27]  Che-Hsin Lin,et al.  Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[28]  D. Weitz,et al.  Monodisperse Double Emulsions Generated from a Microcapillary Device , 2005, Science.

[29]  W. Oppermann,et al.  Spatial Inhomogeneities of Polystrene Gels Prepared from Semidilute Solutions , 2006 .

[30]  S. Prager,et al.  Dynamics of Entangled Polymer Liquids: Do Linear Chains Reptate? , 2007 .

[31]  Yu-Cheng Lin,et al.  Using a T-junction microfluidic chip for monodisperse calcium alginate microparticles and encapsulation of nanoparticles , 2009 .

[32]  Yan Lu,et al.  “Smart” nanoparticles: Preparation, characterization and applications , 2007 .

[33]  E. Kumacheva,et al.  Continuous microfluidic reactors for polymer particles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[34]  H. Stone,et al.  Formation of dispersions using “flow focusing” in microchannels , 2003 .

[35]  E. Kumacheva,et al.  MICROGELS: Old Materials with New Applications , 2006 .

[36]  S. Sugiura,et al.  Size control of calcium alginate beads containing living cells using micro-nozzle array. , 2005, Biomaterials.

[37]  Helmut Cölfen,et al.  Preparation and Characterization of Photo-Cross-Linked Thermosensitive PNIPAAm Nanogels , 2006 .

[38]  入江 正浩,et al.  Bull. Chem. Soc. Jpn. への投稿のすすめ , 2011 .

[39]  H. Adler,et al.  Synthesis and polymerization of a novel functional acrylamide , 1999 .

[40]  M. Nakajima,et al.  New method of producing mono-sized polymer gel particles using microchannel emulsification and UV irradiation , 2005 .

[41]  Zhibing Hu,et al.  Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. , 2007, Angewandte Chemie.

[42]  O. Okay,et al.  Macroporous poly(N-isopropyl)acrylamide networks: formation conditions , 2001 .

[43]  W. Oppermann,et al.  Influence of formation conditions on spatial inhomogeneities in poly(N-isopropylacrylamide) hydrogels , 2004 .

[44]  Liang-Yin Chu,et al.  Controllable monodisperse multiple emulsions. , 2007, Angewandte Chemie.

[45]  R. K. Shah,et al.  Fabrication of Monodisperse Thermosensitive Microgels and Gel Capsules in Microfluidic Devices Highlight Www.rsc.org/softmatter | Soft Matter , 2022 .

[46]  M. Shibayama Universality and Specificity of Polymer Gels Viewed by Scattering Methods , 2006 .

[47]  H. Adler,et al.  Preparation of thermosensitive nanogels by photo-cross-linking , 2002 .

[48]  Yu-Cheng Lin,et al.  Using a microfluidic chip and internal gelation reaction for monodisperse calcium alginate microparticles generation. , 2007, Frontiers in bioscience : a journal and virtual library.