Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas.

We successfully demonstrate the plasmonic coupling between metal nanoantennas and individual GaAs nanowires (NWs). In particular, by using dark-field scattering and second harmonic excitation spectroscopy in partnership with analytical and full-vector FDTD modeling, we demonstrate controlled electromagnetic coupling between individual NWs and plasmonic nanoantennas with gap sizes varied between 90 and 500 nm. The significant electric field enhancement values (up to 20×) achieved inside the NW-nanoantennas gap regions allowed us to tailor the nonlinear optical response of NWs by engineering the plasmonic near-field coupling regime. These findings represent an initial step toward the development of coupled metal-semiconductor resonant nanostructures for the realization of next generation solar cells, detectors, and nonlinear optical devices with reduced footprints and energy consumption.

[1]  M. Brongersma,et al.  An electrically-driven GaAs nanowire surface plasmon source. , 2012, Nano letters.

[2]  P. Barber Absorption and scattering of light by small particles , 1984 .

[3]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[4]  L. D. Negro,et al.  Generation of second harmonic radiation from sub-stoichiometric silicon nitride thin films , 2013 .

[5]  Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing. , 2013, Optics letters.

[6]  Martin Heiss,et al.  Impact of surfaces on the optical properties of GaAs nanowires , 2010 .

[7]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[8]  L. Dal Negro,et al.  Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays. , 2013, Nano letters.

[9]  Wenshan Cai,et al.  Erratum: Plasmonics for extreme light concentration and manipulation , 2010 .

[10]  Peter Nordlander,et al.  Nanoparticle-mediated coupling of light into a nanowire. , 2007, Nano letters.

[11]  Charles M. Lieber,et al.  Semiconductor nanowire laser and nanowire waveguide electro-optic modulators , 2005 .

[12]  M. Cardona,et al.  Interband critical points of GaAs and their temperature dependence. , 1987, Physical review. B, Condensed matter.

[13]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[14]  P. Krogstrup,et al.  Doping incorporation paths in catalyst-free Be-doped GaAs nanowires , 2012, 1210.1670.

[15]  A. A. Maradudin,et al.  Modern Problems in Condensed Matter Sciences , 1991 .

[16]  M. Galli,et al.  Quantum confinement and electroluminescence in ultrathin silicon nanowires fabricated by a maskless etching technique , 2012, Nanotechnology.

[17]  M. Brongersma,et al.  Engineering light absorption in single-nanowire solar cells with metal nanoparticles , 2011 .

[18]  L. Dal Negro,et al.  Enhanced second harmonic generation from InAs nano-wing structures on silicon. , 2013, Nanoscale.

[19]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[20]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[21]  M. Kaniber,et al.  Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures , 2009 .

[22]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[23]  A. Tünnermann,et al.  Far-field imaging for direct visualization of light interferences in GaAs nanowires. , 2012, Nano letters.

[24]  C. Winkelmann,et al.  Optical switching of porphyrin-coated silicon nanowire field effect transistors. , 2007, Nano letters.

[25]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.

[26]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[27]  P. Krogstrup,et al.  Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.

[28]  Jari Turunen,et al.  Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers. , 2007, Nano letters.

[29]  J. Morante,et al.  Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires , 2009 .

[30]  Allan D. Boardman,et al.  Modern Problems in Condensed Matter Sciences , 1991 .

[31]  L. Lauhon,et al.  Spatially resolved plasmonically enhanced photocurrent from Au nanoparticles on a Si nanowire. , 2011, Nano letters.

[32]  Mark L. Brongersma,et al.  Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides , 2006 .

[33]  L. Dal Negro,et al.  Deterministic aperiodic nanostructures for photonics and plasmonics applications , 2012 .

[34]  J. Dadap Optical second-harmonic scattering from cylindrical particles , 2008 .

[35]  Thomas Pertsch,et al.  Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter. , 2013, ACS nano.

[36]  J. Morante,et al.  Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon. , 2012, Nanoscale.

[37]  H. Tan,et al.  Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires. , 2012, Nano letters.

[38]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[39]  Elisabeth Müller,et al.  Optically bright quantum dots in single Nanowires. , 2005, Nano letters.

[40]  A. Fontcuberta i Morral,et al.  P-doping mechanisms in catalyst-free gallium arsenide nanowires. , 2010, Nano letters.

[41]  S. Bergfeld,et al.  Second-harmonic generation in GaAs: experiment versus theoretical predictions of chi(2)xyz. , 2003, Physical review letters.

[42]  G. Mugny,et al.  Three-dimensional multiple-order twinning of self-catalyzed GaAs nanowires on Si substrates. , 2011, Nano letters.

[43]  W. Prost,et al.  A precise optical determination of nanoscale diameters of semiconductor nanowires , 2011, Nanotechnology.

[44]  P. Eklund,et al.  Optical antenna effect in semiconducting nanowires. , 2008, Nano letters.

[45]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[46]  K. Nielsch,et al.  Electrical transport in C‐doped GaAs nanowires: surface effects , 2013, 1304.5891.

[47]  C. Soci,et al.  ZnO nanowire UV photodetectors with high internal gain. , 2007, Nano letters.