Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas.
暂无分享,去创建一个
Luca Dal Negro | Martin Heiss | Anna Fontcuberta i Morral | Daniel Rüffer | Jacob Trevino | L. Dal Negro | J. Trevino | A. Fontcuberta i Morral | M. Heiss | A. Casadei | E. Pecora | C. Forestiere | D. Rüffer | E. Russo-Averchi | F. Matteini | G. Tutuncuoglu | Carlo Forestiere | Gozde Tutuncuoglu | Eleonora Russo-Averchi | Federico Matteini | Alberto Casadei | Emanuele F Pecora
[1] M. Brongersma,et al. An electrically-driven GaAs nanowire surface plasmon source. , 2012, Nano letters.
[2] P. Barber. Absorption and scattering of light by small particles , 1984 .
[3] Charles M. Lieber,et al. Single-nanowire electrically driven lasers , 2003, Nature.
[4] L. D. Negro,et al. Generation of second harmonic radiation from sub-stoichiometric silicon nitride thin films , 2013 .
[5] Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing. , 2013, Optics letters.
[6] Martin Heiss,et al. Impact of surfaces on the optical properties of GaAs nanowires , 2010 .
[7] Z. Kam,et al. Absorption and Scattering of Light by Small Particles , 1998 .
[8] L. Dal Negro,et al. Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays. , 2013, Nano letters.
[9] Wenshan Cai,et al. Erratum: Plasmonics for extreme light concentration and manipulation , 2010 .
[10] Peter Nordlander,et al. Nanoparticle-mediated coupling of light into a nanowire. , 2007, Nano letters.
[11] Charles M. Lieber,et al. Semiconductor nanowire laser and nanowire waveguide electro-optic modulators , 2005 .
[12] M. Cardona,et al. Interband critical points of GaAs and their temperature dependence. , 1987, Physical review. B, Condensed matter.
[13] F. Dimroth,et al. InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.
[14] P. Krogstrup,et al. Doping incorporation paths in catalyst-free Be-doped GaAs nanowires , 2012, 1210.1670.
[15] A. A. Maradudin,et al. Modern Problems in Condensed Matter Sciences , 1991 .
[16] M. Galli,et al. Quantum confinement and electroluminescence in ultrathin silicon nanowires fabricated by a maskless etching technique , 2012, Nanotechnology.
[17] M. Brongersma,et al. Engineering light absorption in single-nanowire solar cells with metal nanoparticles , 2011 .
[18] L. Dal Negro,et al. Enhanced second harmonic generation from InAs nano-wing structures on silicon. , 2013, Nanoscale.
[19] Xiangfeng Duan,et al. Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.
[20] D. Lynch,et al. Handbook of Optical Constants of Solids , 1985 .
[21] M. Kaniber,et al. Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures , 2009 .
[22] W. Cai,et al. Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.
[23] A. Tünnermann,et al. Far-field imaging for direct visualization of light interferences in GaAs nanowires. , 2012, Nano letters.
[24] C. Winkelmann,et al. Optical switching of porphyrin-coated silicon nanowire field effect transistors. , 2007, Nano letters.
[25] Charles M. Lieber,et al. Single nanowire photovoltaics. , 2009, Chemical Society reviews.
[26] Charles M. Lieber,et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.
[27] P. Krogstrup,et al. Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.
[28] Jari Turunen,et al. Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers. , 2007, Nano letters.
[29] J. Morante,et al. Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires , 2009 .
[30] Allan D. Boardman,et al. Modern Problems in Condensed Matter Sciences , 1991 .
[31] L. Lauhon,et al. Spatially resolved plasmonically enhanced photocurrent from Au nanoparticles on a Si nanowire. , 2011, Nano letters.
[32] Mark L. Brongersma,et al. Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides , 2006 .
[33] L. Dal Negro,et al. Deterministic aperiodic nanostructures for photonics and plasmonics applications , 2012 .
[34] J. Dadap. Optical second-harmonic scattering from cylindrical particles , 2008 .
[35] Thomas Pertsch,et al. Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter. , 2013, ACS nano.
[36] J. Morante,et al. Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon. , 2012, Nanoscale.
[37] H. Tan,et al. Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires. , 2012, Nano letters.
[38] R. W. Christy,et al. Optical Constants of the Noble Metals , 1972 .
[39] Elisabeth Müller,et al. Optically bright quantum dots in single Nanowires. , 2005, Nano letters.
[40] A. Fontcuberta i Morral,et al. P-doping mechanisms in catalyst-free gallium arsenide nanowires. , 2010, Nano letters.
[41] S. Bergfeld,et al. Second-harmonic generation in GaAs: experiment versus theoretical predictions of chi(2)xyz. , 2003, Physical review letters.
[42] G. Mugny,et al. Three-dimensional multiple-order twinning of self-catalyzed GaAs nanowires on Si substrates. , 2011, Nano letters.
[43] W. Prost,et al. A precise optical determination of nanoscale diameters of semiconductor nanowires , 2011, Nanotechnology.
[44] P. Eklund,et al. Optical antenna effect in semiconducting nanowires. , 2008, Nano letters.
[45] S. Maier. Plasmonics: Fundamentals and Applications , 2007 .
[46] K. Nielsch,et al. Electrical transport in C‐doped GaAs nanowires: surface effects , 2013, 1304.5891.
[47] C. Soci,et al. ZnO nanowire UV photodetectors with high internal gain. , 2007, Nano letters.