Analysis of a nonlocal-in-time parabolic equation

In this paper, we consider an initial boundary value problem for nonlocal-in-time parabolic equations involving a nonlocal in time derivative. We first show the uniqueness and existence of the weak solution of the nonlocal-in-time parabolic equation, and also the spatial smoothing properties. Moreover, we develop a new framework to study the local limit of the nonlocal model as the horizon parameter δ approaches 0. Exploiting the spatial smoothing properties, we develop a semi-discrete scheme using standard Galerkin finite element method for the spatial discretization, and derive error estimates dependent on data smoothness. Finally, extensive numerical results are presented to illustrate our theoretical findings.

[1]  Erdogan Madenci,et al.  Coupling of peridynamic theory and the finite element method , 2010 .

[2]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[3]  Alexis Vasseur,et al.  A Parabolic Problem with a Fractional Time Derivative , 2015, 1501.07211.

[4]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[5]  Q. Du,et al.  Characterization of function spaces of vector fields and an application in nonlinear peridynamics , 2016 .

[6]  Jun Zou,et al.  Numerical Reconstruction of Heat Fluxes , 2005, SIAM J. Numer. Anal..

[7]  Vidar Thomée,et al.  Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term , 1996, Math. Comput..

[8]  Massimiliano Giona,et al.  Fractional diffusion equation and relaxation in complex viscoelastic materials , 1992 .

[9]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[10]  Jun Zou,et al.  Numerical identifications of parameters in parabolic systems , 1998 .

[11]  R. Lehoucq,et al.  Peridynamics for multiscale materials modeling , 2008 .

[12]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[13]  William McLean,et al.  Time-stepping error bounds for fractional diffusion problems with non-smooth initial data , 2014, J. Comput. Phys..

[14]  Bangti Jin,et al.  An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.

[15]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[16]  J. Pasciak,et al.  Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion , 2013, 1307.1068.

[17]  R. Lehoucq,et al.  Peridynamic Theory of Solid Mechanics , 2010 .

[18]  Qiang Du,et al.  Robust a posteriori stress analysis for quadrature collocation approximations of nonlocal models via nonlocal gradients , 2016 .

[19]  Ralf Metzler,et al.  Physical pictures of transport in heterogeneous media: Advection‐dispersion, random‐walk, and fractional derivative formulations , 2002, cond-mat/0202327.

[20]  Daniel Spector,et al.  Localization of nonlocal gradients in various topologies , 2015 .

[21]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[22]  R. Lehoucq,et al.  Fractional Diffusion on Bounded Domains , 2015 .

[23]  Qiang Du,et al.  Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models , 2014, SIAM J. Numer. Anal..

[24]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[25]  J. Bourgain,et al.  Another look at Sobolev spaces , 2001 .

[26]  Stewart Andrew Silling,et al.  Crack nucleation in a peridynamic solid , 2010 .

[27]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[28]  Bangti Jin,et al.  Two Fully Discrete Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data , 2016, SIAM J. Sci. Comput..

[29]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .