Exploring the Morphology and Origins of the 4C 38.41 Jet

We study the properties of the innermost jet of the flat spectrum radio quasar 1633+382 (4C 38.41) based on very long baseline interferometry (VLBI) data from the radio monitoring observations of the Boston University VLBI program at 43 GHz. Analysis of the components suggests a semi-parabolic jet geometry with jet radius R following the relation R ∝ r0.7 with distance r, with indications of a jet geometry break toward a conical geometry. Brightness temperature falls with distance following TB ∝ r−2.1. Combining this information, magnetic field and electron densities are found to fall along the jet as B ∝ r−1.5 and n ∝ r−1.1, respectively, suggesting that the magnetic configuration in the jet may be dominated by the poloidal component. Our analysis of the jet structure suggests that the innermost jet regions do not follow a ballistic trajectory and, instead, match a sinusoidal morphology, which could be due to jet precession from a helical pattern or Kelvin–Helmholtz instabilities.

[1]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[2]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[3]  E. Ros,et al.  MOJAVE. XVII. Jet Kinematics and Parent Population Properties of Relativistically Beamed Radio-loud Blazars , 2019, The Astrophysical Journal.

[4]  K. Wajima,et al.  Collimation, Acceleration, and Recollimation Shock in the Jet of Gamma-Ray Emitting Radio-loud Narrow-line Seyfert 1 Galaxy 1H0323+342 , 2018, The Astrophysical Journal.

[5]  J. Algaba,et al.  Exploring the Variability of the Flat-spectrum Radio Source 1633+382. II. Physical Properties , 2018, The Astrophysical Journal.

[6]  Y. Murata,et al.  Finding Transitions of Physical Condition in Jets from Observations over the Range of 103–109 Schwarzschild Radii in Radio Galaxy NGC 4261 , 2018 .

[7]  V. Fish,et al.  The Global Jet Structure of the Archetypical Quasar 3C 273 , 2018 .

[8]  L. Gurvits,et al.  The high brightness temperature of B0529+483 revealed by RadioAstron and implications for interstellar scattering , 2017, 1711.06713.

[9]  J. Algaba,et al.  Exploring the Variability of the Flat Spectrum Radio Source 1633+382. I. Phenomenology of the Light Curves , 2017, 1711.10120.

[10]  E. Ros,et al.  VLBA polarimetric monitoring of 3C 111 , 2017, 1711.01593.

[11]  A. Lähteenmäki,et al.  Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program , 2017, 1711.03983.

[12]  J. Algaba,et al.  Pilot KaVA monitoring on the M87 jet: confirming the inner jet structure and superluminal motions at sub-pc scales , 2017, 1706.02066.

[13]  M. Lister,et al.  MOJAVE - XIV. Shapes and opening angles of AGN jets , 2017, 1705.02888.

[14]  E. Nokhrina Brightness temperature - obtaining the physical properties of a non-equipartition plasma , 2017, 1702.08676.

[15]  K. Asada,et al.  INDICATION OF THE BLACK HOLE POWERED JET IN M87 BY VSOP OBSERVATIONS , 2016 .

[16]  Resolving the Geometry of the Innermost Relativistic Jets in Active Galactic Nuclei , 2016, 1611.04075.

[17]  J. Algaba,et al.  STRUCTURAL TRANSITION IN THE NGC 6251 JET: AN INTERPLAY WITH THE SUPERMASSIVE BLACK HOLE AND ITS HOST GALAXY , 2016, 1610.06351.

[18]  T. Hovatta,et al.  Multiwavelength observations of the γ-ray flaring quasar S4 1030+61 in 2009-2014 , 2016, 1607.05852.

[19]  Uwe Bach,et al.  PROBING THE INNERMOST REGIONS OF AGN JETS AND THEIR MAGNETIC FIELDS WITH RADIOASTRON. I. IMAGING BL LACERTAE AT 21 μas RESOLUTION , 2015, 1512.04690.

[20]  The Fermi-LAT Collaboration Fermi Large Area Telescope Third Source Catalog , 2015, 1501.02003.

[21]  A. Tchekhovskoy,et al.  Core shifts, magnetic fields and magnetization of extragalactic jets , 2014, 1410.7310.

[22]  A. S. Pozanenko,et al.  Review of scientific topics for the Millimetron space observatory , 2014, 1502.06071.

[23]  M. Cohen,et al.  STUDIES OF THE JET IN BL LACERTAE. II. SUPERLUMINAL ALFVÉN WAVES , 2014, 1409.3599.

[24]  A. Tchekhovskoy,et al.  Dynamically important magnetic fields near accreting supermassive black holes , 2014, Nature.

[25]  L. Gergely,et al.  A spinning supermassive black hole binary model consistent with VLBI observations of the S5 1928+738 jet , 2014, 1402.2644.

[26]  K. Sokolovsky,et al.  The core shift effect in the blazar 3C 454.3 , 2013, 1307.4100.

[27]  Masanori Nakamura,et al.  DISCOVERY OF SUB- TO SUPERLUMINAL MOTIONS IN THE M87 JET: AN IMPLICATION OF ACCELERATION FROM SUB-RELATIVISTIC TO RELATIVISTIC SPEEDS , 2013, 1311.5709.

[28]  Astrophysics,et al.  MAPPING COMPOUND COSMIC TELESCOPES CONTAINING MULTIPLE PROJECTED CLUSTER-SCALE HALOS , 2013, 1311.2583.

[29]  M. Wright,et al.  FINE-SCALE STRUCTURE OF THE QUASAR 3C 279 MEASURED WITH 1.3 mm VERY LONG BASELINE INTERFEROMETRY , 2013, 1305.3359.

[30]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[31]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[32]  W. P. Chen,et al.  Variability of the blazar 4C 38.41 (B3 1633+382) from GHz frequencies to GeV energies , 2012, 1207.3979.

[33]  Masanori Nakamura,et al.  THE STRUCTURE OF THE M87 JET: A TRANSITION FROM PARABOLIC TO CONICAL STREAMLINES , 2011, 1110.1793.

[34]  Tod R. Lauer,et al.  Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies , 2011, Nature.

[35]  J. Algaba,et al.  Search for correlations between the optical and radio polarization of AGNs II: VLBA polarization data at 12+15+22+24+43 GHz , 2011, 1110.5717.

[36]  G. Nowak,et al.  SUBSTELLAR-MASS COMPANIONS TO THE K-GIANTS HD 240237, BD +48 738, AND HD 96127 , 2011, 1110.1641.

[37]  Paul S. Smith,et al.  Multi-Frequency Observations of Gamma-Ray Blazar 1633+382 , 2011 .

[38]  K. Sokolovsky,et al.  A VLBA survey of the core shift effect in AGN jets - I. Evidence of dominating synchrotron opacity , 2011, 1103.6032.

[39]  Zhi-qiang Shen,et al.  A kinematic study of the compact jet in quasar B3 1633+382 , 2010, 1006.4002.

[40]  P. Hewett,et al.  Improved redshifts for SDSS quasar spectra , 2010, 1003.3017.

[41]  S. O’Sullivan,et al.  Magnetic field strength and spectral distribution of six parsec-scale active galactic nuclei jets , 2009, 0907.5211.

[42]  Y. Lyubarsky ASYMPTOTIC STRUCTURE OF POYNTING-DOMINATED JETS , 2009, 0902.3357.

[43]  Robert P. Johnson,et al.  BRIGHT ACTIVE GALACTIC NUCLEI SOURCE LIST FROM THE FIRST THREE MONTHS OF THE FERMI LARGE AREA TELESCOPE ALL-SKY SURVEY , 2009, 0902.1559.

[44]  A. Lahteenmaki,et al.  Doppler factors, Lorentz factors and viewing angles for quasars, BL Lacertae objects and radio galaxies , 2008, 0811.4278.

[45]  S. Komissarov,et al.  Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources , 2008, 0811.1467.

[46]  M. Lister,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. V. MULTI-EPOCH VLBA IMAGES , 2009 .

[47]  A. Tchekhovskoy,et al.  Simulations of ultrarelativistic magnetodynamic jets from gamma‐ray burst engines , 2008, 0803.3807.

[48]  S. Komissarov,et al.  Magnetic acceleration of relativistic active galactic nucleus jets , 2007 .

[49]  Sang-Sung Lee,et al.  A GLOBAL 86 GHZ VLBI SURVEY OF COMPACT RADIO SOURCES , 2007, 0803.4035.

[50]  P. Hardee,et al.  The role of Kelvin-Helmholtz instability in the internal structure of relativistic outflows. The case of the jet in 3C 273 , 2006, astro-ph/0606109.

[51]  M. Cohen,et al.  ACCEPTED FOR PUBLICATION IN APJ LETTERS Preprint typeset using LATEX style emulateapj v. 12/14/05 INTRINSIC BRIGHTNESS TEMPERATURES OF AGN JETS , 2006 .

[52]  M. Cohen,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. XI. SPECTRAL DISTRIBUTIONS , 2014, 1404.0014.

[53]  Paul S. Smith,et al.  Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array , 2005, astro-ph/0502501.

[54]  H. Falcke,et al.  The twin-jet system in NGC 1052: VLBI-scrutiny of the obscuring torus , 2004, astro-ph/0407283.

[55]  M. Kino,et al.  Energetics of TeV Blazars and Physical Constraints on Their Emission Regions , 2001, astro-ph/0107436.

[56]  D. Merritt,et al.  The M•-σ Relation for Supermassive Black Holes , 2000, astro-ph/0008310.

[57]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[58]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[59]  L. Gurvits,et al.  Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure , 2005, astro-ph/0505536.

[60]  D. Murphy,et al.  VLA observations of a complete sample of core-dominated radio sources , 1993 .

[61]  M. Aller,et al.  Pearson-readhead survey sources: properties of the centimeter-wavelength flux and polarization of a complete radio sample , 1992 .

[62]  A. Readhead,et al.  10.8-GHZ FLUX DENSITY VARIATIONS AMONG A COMPLETE SAMPLE OF SOURCES FROM THE NRAO-BONN S4 SURVEY. , 1983 .

[63]  W. Cotton,et al.  Broadband radio observations of low-frequency variable sources , 1981 .

[64]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .