First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.

Silicon is of significant interest as a next-generation anode material for lithium-ion batteries due to its extremely high capacity. The reaction of lithium with crystalline silicon is known to present a rich range of phenomena, including electrochemical solid state amorphization, crystallization at full lithiation of a Li(15)Si(4) phase, hysteresis in the first lithiation-delithiation cycle, and highly anisotropic lithiation in crystalline samples. Very little is known about these processes at an atomistic level, however. To provide fundamental insights into these issues, we develop and apply a first principles, history-dependent, lithium insertion and removal algorithm to model the process of lithiation and subsequent delithiation of crystalline Si. The simulations give a realistic atomistic picture of lithiation demonstrating, for the first time, the amorphization process and hinting at the formation of the Li(15)Si(4) phase. Voltages obtained from the simulations show that lithiation of the (110) surface is thermodynamically more favorable than lithiation of the (100) or (111) surfaces, providing an explanation for the drastic lithiation anisotropy seen in experiments on Si micro- and nanostructures. Analysis of the delithiation and relithiation processes also provides insights into the underlying physics of the lithiation-delithiation hysteresis, thus providing firm conceptual foundations for future design of improved Si-based anodes for Li ion battery applications.

[1]  Christopher S. Johnson,et al.  Electronic structure of lithium battery interphase compounds: comparison between inelastic x-ray scattering measurements and theory. , 2011, The Journal of chemical physics.

[2]  V. Shenoy,et al.  The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study. , 2011, Nano letters.

[3]  Brandon R. Long,et al.  Dopant Modulated Li Insertion in Si for Battery Anodes: Theory and Experiment , 2011 .

[4]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[5]  Brandon R. Long,et al.  Strain Anisotropies and Self‐Limiting Capacities in Single‐Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium‐Ion Battery Anodes , 2011 .

[6]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[7]  Yi Cui,et al.  Anomalous shape changes of silicon nanopillars by electrochemical lithiation. , 2011, Nano letters.

[8]  Yi Cui,et al.  Anisotropic Lithium Insertion Behavior in Silicon Nanowires: Binding Energy, Diffusion Barrier, and Strain Effect , 2011 .

[9]  T. Zhu,et al.  Atomistic mechanisms of lithium insertion in amorphous silicon , 2011 .

[10]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[11]  John G. Ekerdt,et al.  Structure and Properties of Li―Si Alloys: A First-Principles Study , 2011 .

[12]  Enge Wang,et al.  First principles study of lithium insertion in bulk silicon , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Enge Wang,et al.  Lithium insertion in silicon nanowires: an ab initio study. , 2010, Nano letters.

[14]  Jun Chen,et al.  Lithium transport at silicon thin film: barrier for high-rate capability anode. , 2010, The Journal of chemical physics.

[15]  Vincent Chevrier,et al.  First principles study of Li–Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations , 2010 .

[16]  Vincent Chevrier,et al.  First Principles Studies of Disordered Lithiated Silicon , 2010 .

[17]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[18]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[19]  Yong‐Mook Kang,et al.  First-principle calculation-assisted structural study on the nanoscale phase transition of Si for Li-ion secondary batteries. , 2009, Inorganic chemistry.

[20]  J. Dahn,et al.  First principles studies of silicon as a negative electrode material for lithium-ion batteries , 2009 .

[21]  Vincent Chevrier,et al.  First Principles Model of Amorphous Silicon Lithiation , 2009 .

[22]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[23]  Pengjian Zuo,et al.  Geometric and electronic studies of Li15Si4 for silicon anode , 2008 .

[24]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[25]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[26]  Dominique Guyomard,et al.  On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries , 2007 .

[27]  H. Nakanishi,et al.  Crystal and electronic structure of Li15Si4 , 2007 .

[28]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[29]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[30]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[31]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[32]  Simon J. L. Billinge,et al.  PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data , 2004 .

[33]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[34]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[35]  David Alan Drabold,et al.  High-pressure phases of amorphous and crystalline silicon , 2003 .

[36]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[37]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[38]  Otto Zhou,et al.  Alloy Formation in Nanostructured Silicon , 2001 .

[39]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[40]  Liquan Chen,et al.  The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature , 2000 .

[41]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[42]  N. Bernstein,et al.  Amorphous-crystal interface in silicon: A tight-binding simulation , 1998, cond-mat/9805092.

[43]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[44]  A. Pelton,et al.  The Ge- Li (Germanium-Lithium) system , 1997 .

[45]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  Jacobson,et al.  Equilibrium shape of Si. , 1993, Physical review letters.

[48]  Reinhard Nesper,et al.  Li21Si5, a Zintl phase as well as a Hume-Rothery phase , 1987 .

[49]  R. Nesper,et al.  Li12Si7, eine Verbindung mit trigonal‐planaren Si4‐Clustern und isometrischen Si5‐Ringen , 1986 .

[50]  David Turnbull,et al.  Calorimetric studies of crystallization and relaxation of amorphous Si and Ge prepared by ion implantation , 1985 .

[51]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[52]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[53]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[54]  D. Chadi,et al.  Atomic and Electronic Structures of Reconstructed Si(100) Surfaces , 1979 .

[55]  H. E. Farnsworth,et al.  Structure and Adsorption Characteristics of Clean Surfaces of Germanium and Silicon , 1959 .