Electrode characteristics of Li2Ti3O7-ramsdellite processed by mechanical grinding

[1]  J. Bobet,et al.  Structural and hydrogen sorption studies of NdNi5-xAlx and GdNi5-xAlx , 1998 .

[2]  Rolf E. Hummel,et al.  Alloys and Compounds , 1998 .

[3]  F. García-Alvarado,et al.  Electrochemical lithium intercalation in Li2Ti3O7-ramsdellite structure , 1997 .

[4]  S. Orimo,et al.  Notable hydriding properties of a nanostructured composite material of the Mg2Ni-H system synthesized by reactive mechanical grinding , 1997 .

[5]  J. Tarascon,et al.  Effect of Mechanical Grinding on the Lithium Intercalation Process in Graphites and Soft Carbons , 1996 .

[6]  O. Bohnké,et al.  Electrochemical intercalation of lithium into the ramsdellite-type structure of Li2Ti3O7 , 1996 .

[7]  Zheng,et al.  Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium. , 1995, Physical review. B, Condensed matter.

[8]  T. Masumoto,et al.  Effect of ball milling on the hydrogen absorption rate of FeTi and Mg2Ni compounds , 1994 .

[9]  Gholam-Abbas Nazri,et al.  Solid state batteries : materials design and optimization , 1994 .

[10]  M. Berrettoni,et al.  Electrochemical, ZAS and FTIR study of lithium intercalation in Na1+xV3O8 , 1993 .

[11]  M. Berrettoni,et al.  Study of amorphous and crystalline Li1+xV3O8 by FTIR, XAS and electrochemical techniques , 1992 .

[12]  W. Johnson,et al.  Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu , 1989 .

[13]  Reiner Kirchheim,et al.  Hydrogen as a probe for the average thickness of a grain boundary , 1987 .

[14]  P. Fischer,et al.  Dimagnesium cobalt(I) pentahydride, Mg2CoH5, containing square-pyramidal pentahydrocobaltate(4-) (CoH54-) anions , 1985 .

[15]  M. Greenblatt,et al.  Lithium insertion into Li2Ti3O7 , 1985 .

[16]  P. Hagenmuller,et al.  Hydriding properties of a mechanically alloyed mixture with a composition Mg2Ni , 1985 .

[17]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .