1.9% bi-axial tensile strain in thick germanium suspended membranes fabricated in optical germanium-on-insulator substrates for laser applications
暂无分享,去创建一个
Jérôme Faist | A. Chelnokov | A. Gassenq | K. Guilloy | N. Pauc | Ivan Duchemin | Hans Sigg | Julie Widiez | Vincent Reboud | Samuel Tardif | G. O. Dias | R. Geiger | J. Faist | J. Hartmann | J. Escalante | J. Widiez | Y. Niquet | I. Duchemin | D. Rouchon | S. Tardif | A. Chelnokov | T. Zabel | R. Geiger | K. Guilloy | A. Gassenq | N. Pauc | F. Rieutord | V. Reboud | V. Calvo | H. Sigg | D. Rouchon | J. M. Hartmann | François Rieutord | T. Zabel | V. Calvo | Y. M. Niquet | G. Osvaldo Dias | Jose M. Escalante
[1] Jérôme Faist,et al. Analysis of enhanced light emission from highly strained germanium microbridges , 2013, Nature Photonics.
[2] I. Wolf. Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits , 1996 .
[3] James S. Harris,et al. Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy , 2011 .
[4] P. Gentile,et al. Tensile strained germanium nanowires measured by photocurrent spectroscopy and X-ray microdiffraction. , 2015, Nano letters.
[5] Donguk Nam,et al. Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics. , 2015, Optics express.
[6] J. Faist,et al. Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.
[7] Jurgen Michel,et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. , 2007, Optics express.
[8] G. Fishman,et al. Band structure and optical gain of tensile-strained germanium based on a 30 band k⋅p formalism , 2010 .
[9] Krishna C. Saraswat,et al. Direct bandgap germanium-on-silicon inferred from 5.7% 〈100〉 uniaxial tensile strain [Invited] , 2014 .
[10] Fred H. Pollak,et al. Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors , 1972 .
[11] Feng Chen,et al. Direct-bandgap light-emitting germanium in tensilely strained nanomembranes , 2011, Proceedings of the National Academy of Sciences.
[12] K. Bourdelle,et al. Power-dependent Raman analysis of highly strained Si nanobridges. , 2014, Nano letters.
[13] Isabelle Sagnes,et al. All‐Around SiN Stressor for High and Homogeneous Tensile Strain in Germanium Microdisk Cavities , 2015 .
[14] A. Dimoulas,et al. Strain-induced changes to the electronic structure of germanium , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.
[15] Frederic Allibert,et al. Germanium-on-insulator (GeOI) structures realized by the Smart Cut technology , 2004 .
[16] Alban Gassenq,et al. Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications , 2015, Photonics West - Optoelectronic Materials and Devices.
[17] T. Signamarcheix,et al. Fabrication and characterisation of 200 mm germanium-on-insulator (GeOI) substrates made from bulk germanium , 2006 .
[18] Van de Walle Cg. Band lineups and deformation potentials in the model-solid theory. , 1989 .
[19] Van de Walle CG. Band lineups and deformation potentials in the model-solid theory. , 1989, Physical review. B, Condensed matter.