Experimental investigation of the uncertainty principle for radial degrees of freedom

While the uncertainty principle for linear position and linear momentum, and more recently for angular position and angular momentum, is well established, its radial equivalent has so far eluded researchers. Here we exploit the logarithmic radial position, ln   r , and hyperbolic momentum, P H , to formulate a rigorous uncertainty principle for the radial degree of freedom of transverse light modes. We show that the product of their uncertainties is bounded by Planck’s constant, Δ ln   r · Δ P H ≥ ℏ / 2 , and identify a set of radial intelligent states that satisfy the equality. We illustrate the radial uncertainty principle for a variety of intelligent states, by preparing transverse light modes with suitable radial profiles. We use eigenmode projection to measure the corresponding hyperbolic momenta, confirming the minimum uncertainty bound. Optical systems are most naturally described in terms of cylindrical coordinates, and our radial uncertainty relation provides the missing piece in characterizing optical quantum measurements, providing a new platform for the fundamental tests and applications of quantum optics.

[1]  Lixiang Chen,et al.  Radial diffraction of light in the radial momentum state space. , 2020, Optics letters.

[2]  Matej Pivoluska,et al.  High-Dimensional Pixel Entanglement: Efficient Generation and Certification , 2020, Quantum.

[3]  R. Boyd,et al.  Realization of the Einstein-Podolsky-Rosen Paradox Using Radial Position and Radial Momentum Variables. , 2019, Physical review letters.

[4]  Lixiang Chen,et al.  Violation of a Bell inequality in two-dimensional state spaces for radial quantum number , 2018, Physical Review A.

[5]  N. Radwell,et al.  Optimisation of arbitrary light beam generation with spatial light modulators , 2017 .

[6]  R. Boyd,et al.  Observation of subluminal twisted light in vacuum , 2015, 1512.02597.

[7]  Mario Krenn,et al.  Physical meaning of the radial index of Laguerre-Gauss beams , 2015, 2017 Conference on Lasers and Electro-Optics (CLEO).

[8]  Ebrahim Karimi,et al.  Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference , 2014 .

[9]  R. W. Boyd,et al.  Radial quantum number of Laguerre-Gauss modes , 2014, 1401.4985.

[10]  W. Löffler,et al.  Walsh modes and radial quantum correlations of spatially entangled photons. , 2013, Optics letters.

[11]  S. Barnett,et al.  Detection of a Spinning Object Using Light’s Orbital Angular Momentum , 2013, Science.

[12]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[13]  Ying Li,et al.  Photonic polarization gears for ultra-sensitive angular measurements , 2013, Nature Communications.

[14]  Ebrahim Karimi,et al.  Radial coherent and intelligent states of paraxial wave equation. , 2012, Optics letters.

[15]  Salvador Miret-Artés,et al.  A Trajectory Description of Quantum Processes. I. Fundamentals , 2012 .

[16]  S. Wehner,et al.  The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics , 2010, Science.

[17]  K. Fujikawa Non-Hermitian Radial Momentum Operator and Path Integrals in Polar Coordinates , 2008, 0805.3879.

[18]  G. Milburn,et al.  The quantum Mellin transform , 2006, quant-ph/0702107.

[19]  Zeev Zalevsky,et al.  Radial mask for imaging systems that exhibit high resolution and extended depths of field. , 2006, Applied optics.

[20]  R. Boyd,et al.  Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits , 2005, 2005 Quantum Electronics and Laser Science Conference.

[21]  S. Franke-Arnold,et al.  Angular EPR paradox , 2004, quant-ph/0506240.

[22]  Stephen M. Barnett,et al.  Uncertainty principle for angular position and angular momentum , 2004 .

[23]  F. Coutinho,et al.  Operator domains and self-adjoint operators , 2004 .

[24]  D. Grier A revolution in optical manipulation , 2003, Nature.

[25]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[26]  J. Faraut,et al.  Self-adjoint extensions of operators and the teaching of quantum mechanics , 2001, quant-ph/0103153.

[27]  G. Paz The non-self-adjointness of the radial momentum operator in n dimensions , 2000, math-ph/0009016.

[28]  J. Twamley,et al.  Quantum distribution functions for radial observables , 1997, quant-ph/9701026.

[29]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[30]  P. Robinson,et al.  Generalized Momentum Operators in Quantum Mechanics , 1963 .

[31]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[32]  W. L. Cowley The Uncertainty Principle , 1949, Nature.

[33]  W. Heisenberg The Physical Principles of the Quantum Theory , 1930 .