Ribosomal RNA genes, RNA polymerases, nucleolar structures, and synthesis of rRNA in the yeast Saccharomyces cerevisiae.

[1]  M. Nomura,et al.  Transcription of chromosomal rRNA genes by both RNA polymerase I and II in yeast uaf30 mutants lacking the 30 kDa subunit of transcription factor UAF , 2001, EMBO Journal.

[2]  J. Reeve,et al.  TFE, an Archaeal Transcription Factor in Methanobacterium thermoautotrophicum Related to Eucaryal Transcription Factor TFIIEα , 2001, Journal of bacteriology.

[3]  M. Nomura,et al.  Identification of DNA cis Elements Essential for Expansion of Ribosomal DNA Repeats inSaccharomyces cerevisiae , 2001, Molecular and Cellular Biology.

[4]  C. Carles,et al.  The recruitment of RNA polymerase I on rDNA is mediated by the interaction of the A43 subunit with Rrn3 , 2000, The EMBO journal.

[5]  M. Nomura,et al.  Complete deletion of yeast chromosomal rDNA repeats and integration of a new rDNA repeat: use of rDNA deletion strains for functional analysis of rDNA promoter elements in vivo. , 2000, Nucleic acids research.

[6]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[7]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[8]  P. Gleizes,et al.  Assembly and functional organization of the nucleolus: ultrastructural analysis of Saccharomyces cerevisiae mutants. , 2000, Molecular biology of the cell.

[9]  M. Dundr,et al.  The nucleolus: an old factory with unexpected capabilities. , 2000, Trends in cell biology.

[10]  M. Nomura,et al.  Transcription Factor UAF, Expansion and Contraction of Ribosomal DNA (rDNA) Repeats, and RNA Polymerase Switch in Transcription of Yeast rDNA , 1999, Molecular and Cellular Biology.

[11]  M. Nomura,et al.  Regulation of Ribosome Biosynthesis in Escherichia coli and Saccharomyces cerevisiae: Diversity and Common Principles , 1999, Journal of bacteriology.

[12]  L. Pillus,et al.  Net Results of Nucleolar Dynamics , 1999, Cell.

[13]  Angelika Amon,et al.  Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus , 1999, Nature.

[14]  Anna Shevchenko,et al.  Exit from Mitosis Is Triggered by Tem1-Dependent Release of the Protein Phosphatase Cdc14 from Nucleolar RENT Complex , 1999, Cell.

[15]  M. Nomura,et al.  RNA polymerase switch in transcription of yeast rDNA: role of transcription factor UAF (upstream activation factor) in silencing rDNA transcription by RNA polymerase II. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. Soppa,et al.  Transcription initiation in Archaea: facts, factors and future aspects , 1999, Molecular microbiology.

[17]  D. Tollervey,et al.  Ribosome synthesis in Saccharomyces cerevisiae. , 1999, Annual review of genetics.

[18]  T. Kobayashi,et al.  Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. , 1998, Genes & development.

[19]  M. Nomura,et al.  Reconstitution of Yeast RNA Polymerase I Transcription in Vitro from Purified Components , 1998, The Journal of Biological Chemistry.

[20]  M. Nomura,et al.  Mutational Analysis of the Structure and Localization of the Nucleolus in the Yeast Saccharomyces cerevisiae , 1998, The Journal of cell biology.

[21]  T. Pederson,et al.  The plurifunctional nucleolus. , 1998, Nucleic acids research.

[22]  M. Nomura,et al.  Interaction of TATA-Binding Protein with Upstream Activation Factor Is Required for Activated Transcription of Ribosomal DNA by RNA Polymerase I in Saccharomyces cerevisiae In Vivo , 1998, Molecular and Cellular Biology.

[23]  H. Tschochner,et al.  A specialized form of RNA polymerase I, essential for initiation and growth‐dependent regulation of rRNA synthesis, is disrupted during transcription , 1998, The EMBO journal.

[24]  S. Bell,et al.  Transcription in Archaea. , 1998, Cold Spring Harbor symposia on quantitative biology.

[25]  D. Lalo,et al.  Histones H3 and H4 are components of upstream activation factor required for the high-level transcription of yeast rDNA by RNA polymerase I. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Warner,et al.  Does Saccharomyces need an organized nucleolus? , 1997, Chromosoma.

[27]  K. Mitomo,et al.  A novel 66-kilodalton protein complexes with Rrn6, Rrn7, and TATA-binding protein to promote polymerase I transcription initiation in Saccharomyces cerevisiae , 1996, Molecular and cellular biology.

[28]  M. Nomura,et al.  The role of TBP in rDNA transcription by RNA polymerase I in Saccharomyces cerevisiae: TBP is required for upstream activation factor-dependent recruitment of core factor. , 1996, Genes & development.

[29]  D. Lalo,et al.  RRN11 Encodes the Third Subunit of the Complex Containing Rrn6p and Rrn7p That Is Essential for the Initiation of rDNA Transcription by Yeast RNA Polymerase I* , 1996, The Journal of Biological Chemistry.

[30]  T. Kobayashi,et al.  A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities , 1996, Genes to cells : devoted to molecular & cellular mechanisms.

[31]  Y. Nogi,et al.  Multiprotein transcription factor UAF interacts with the upstream element of the yeast RNA polymerase I promoter and forms a stable preinitiation complex. , 1996, Genes & development.

[32]  R. Gourse,et al.  rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli. , 1996, Annual review of microbiology.

[33]  C. Condon,et al.  Control of rRNA transcription in Escherichia coli. , 1995, Microbiological reviews.

[34]  P. Thuriaux,et al.  Transcription in archaea: similarity to that in eucarya. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[35]  R. A. Butow,et al.  A polymerase switch in the synthesis of rRNA in Saccharomyces cerevisiae , 1995, Molecular and cellular biology.

[36]  G. Drouin,et al.  The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. , 1995, Molecular biology and evolution.

[37]  J. Venema,et al.  Development and application of an in vivo system to study yeast ribosomal RNA biogenesis and function , 1995, Yeast.

[38]  Y. Nogi,et al.  RRN6 and RRN7 encode subunits of a multiprotein complex essential for the initiation of rDNA transcription by RNA polymerase I in Saccharomyces cerevisiae. , 1994, Genes & development.

[39]  Y. Chernoff,et al.  Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics. , 1994, The EMBO journal.

[40]  F. Sherman,et al.  Variations in the number of ribosomal DNA units in morphological mutants and normal strains of Candida albicans and in normal strains of Saccharomyces cerevisiae , 1993, Journal of bacteriology.

[41]  R. Dammann,et al.  Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. , 1993, Nucleic acids research.

[42]  Y. Nogi,et al.  Structural alterations of the nucleolus in mutants of Saccharomyces cerevisiae defective in RNA polymerase I , 1993, Molecular and cellular biology.

[43]  D. Lockshon,et al.  The arrest of replication forks in the rDNA of yeast occurs independently of transcription , 1992, Cell.

[44]  Y. Nogi,et al.  An approach for isolation of mutants defective in 35S ribosomal RNA synthesis in Saccharomyces cerevisiae. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Y. Nogi,et al.  Synthesis of large rRNAs by RNA polymerase II in mutants of Saccharomyces cerevisiae defective in RNA polymerase I. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[46]  G. Karpen,et al.  A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. , 1988, Genes & development.

[47]  G. Roeder,et al.  Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I , 1987, Cell.

[48]  E. Elion,et al.  An RNA polymerase I enhancer in Saccharomyces cerevisiae , 1986, Molecular and cellular biology.

[49]  R. Tjian,et al.  Transcription of herpes simplex virus tk sequences under the control of wild-type and mutant human RNA polymerase I promoters , 1985, Molecular and cellular biology.

[50]  E. Elion,et al.  The major promoter element of rRNA transcription in yeast lies 2 kb upstream , 1984, Cell.

[51]  M. Rosbash,et al.  The effect of temperature-sensitive RNA mutants on the transcription products from cloned ribosomal protein genes of yeast , 1981, Cell.

[52]  I. Grummt Specific transcription of mouse ribosomal DNA in a cell-free system that mimics control in vivo. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[53]  I B Dawid,et al.  Repeated genes in eukaryotes. , 1980, Annual review of biochemistry.

[54]  J. Szostak,et al.  Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae , 1980, Nature.

[55]  T. Petes Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes , 1980, Cell.

[56]  D. Botstein,et al.  Simple Mendelian inheritance of the reiterated ribosomal DNA of yeast. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[57]  S. Spiegelman,et al.  LOCALIZATION OF DNA COMPLEMENTARY TO RIBOSOMAL RNA IN THE NUCLEOLUS ORGANIZER REGION OF DROSOPHILA MELANOGASTER. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J. Gurdon,et al.  ABSENCE OF RIBOSOMAL RNA SYNTHESIS IN THE ANUCLEOLATE MUTANT OF XENOPUS LAEVIS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.