ADVANCED CFD AND MODELING OF ACCIDENTAL EXPLOSIONS

▪ AbstractThis paper reviews the current state of the art in accidental explosion modeling using methods based on computational fluid dynamics (CFD) in the petrochemical process industries. We discuss the problem in terms of its industrial importance and its technical difficulty, which stems mainly from the large range of length and timescales that must be represented. Explicit representation of all scales is not feasible due to limitations of computational cost, and modeling of unresolved physical features is required. We also discuss geometry modeling using the porosity/distributed resistance (PDR) method and review relevant combustion modeling. We describe an advanced CFD approach using unstructured adaptive gridding and discuss its usefulness in the context of results obtained for both two dimensional and three dimensional simulations of gas explosion phenomena in complex geometries.

[1]  S. Pope PDF methods for turbulent reactive flows , 1985 .

[2]  P. Taylor,et al.  Flame propagation along a vented duct containing grids , 1989 .

[3]  Klaus Bremhorst,et al.  A Modified Form of the k-ε Model for Predicting Wall Turbulence , 1981 .

[4]  F. Ducros,et al.  A thickened flame model for large eddy simulations of turbulent premixed combustion , 2000 .

[5]  William N. Dawes,et al.  CFD Analysis of a Complete Industrial Lean Premixed Gas Turbine Combustor , 2000 .

[6]  Karl W. Jenkins,et al.  Flame Kernel Interactions in a Turbulent Environment , 2001 .

[7]  Rs Cant,et al.  A theoretical model of premixed turbulent combustion in closed vessels , 1989 .

[8]  Rs Cant,et al.  A turbulent reaction rate model for premixed turbulent combustion in spark-ignition engines , 2000 .

[9]  P. J O'Rourke,et al.  Two scaling transformations for the numerical computation of multidimensional unsteady laminar flames , 1979 .

[10]  B. Hjertager,et al.  On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion , 1977 .

[11]  Tron Solberg,et al.  Computer modelling of gas explosion propagation in offshore modules , 1992 .

[12]  K. Bray,et al.  Turbulent flows with premixed reactants , 1980 .

[13]  William N. Dawes,et al.  The practical application of solution-adaption to the numerical simulation of complex turbomachinery problems , 1992 .

[14]  Salah S. Ibrahim,et al.  Studies of premixed flame propagation in explosion tubes , 1999 .

[15]  John Watterson,et al.  A Solution Adaptive Mesh Procedure for Predicting Confined Explosions , 1998 .

[16]  W. P. M. Mercx,et al.  Validation of scaling techniques for experimental vapor cloud explosion investigations , 1995 .

[17]  Stewart Cant Direct numerical simulation of premixed turbulent flames , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  William N. Dawes,et al.  Reducing Bottlenecks in the CAD-to-Mesh-to-Solution Cycle Time to Allow CFD to Participate in Design , 2000 .

[19]  D. Bradley,et al.  Criteria for turbulent propagation limits of premixed flames , 1985 .

[20]  S. Ibrahim,et al.  The effects of obstructions on overpressure resulting from premixed flame deflagration , 2001 .

[21]  A. K. Oppenheim,et al.  Experimental observations of the transition to detonation in an explosive gas , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  Thierry Poinsot,et al.  Quenching processes and premixed turbulent combustion diagrams , 1991, Journal of Fluid Mechanics.

[23]  O. Zienkiewicz,et al.  Finite element Euler computations in three dimensions , 1988 .

[24]  John Watterson,et al.  Predicting confined explosions with an unstructured adaptive mesh code , 1996 .

[25]  B. Hjertager Explosions in offshore modules , 1991 .

[26]  S. Cant High-performance computing in computational fluid dynamics: progress and challenges , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  M. J. Andrews,et al.  THREE-DIMENSIONAL NUMERICAL SIMULATION OF SHELL-AND-TUBE HEAT EXCHANGERS. PART II: HEAT TRANSFER , 1998 .

[28]  Bjørn H. Hjertager,et al.  Simulation of gas explosions , 1989 .

[29]  Antony Jameson,et al.  Multigrid solution of the Eu-ler equations for aircraft configurations , 1984 .

[30]  Elaine S. Oran,et al.  Numerical simulation of detonation initiation in a flame brush : The role of hot spots , 1999 .

[31]  Elaine S. Oran,et al.  Numerical Simulation of Deflagration-to-Detonation Transition: The Role of Shock-Flame Interactions in Turbulent Flames , 1999 .

[32]  John Ranasinghe,et al.  A Turbulent Combustion Model for a Stratified Charged, Spark Ignited Internal Combustion Engine , 2000 .

[33]  R. Borghi On the Structure and Morphology of Turbulent Premixed Flames , 1985 .

[34]  Ann P. Dowling,et al.  Computational modeling of self-excited combustion instabilities , 2001 .

[35]  M. J. Andrews,et al.  Three dimensional numerical simulation of shell-and-tube heat exchangers. Part I: Foundation and fluid mechanics , 1998 .

[36]  J. B. Moss,et al.  Unified modeling approach for premixed turbulent combustion—Part I: General formulation , 1985 .

[37]  Bjørn H. Hjertager,et al.  Solution adaptive CFD simulation of premixed flame propagation over various solid obstructions , 2002 .

[38]  Kenneth Häggkvist,et al.  A two-equation turbulence model for canopy flows , 1990 .

[39]  RS Cant,et al.  Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion , 2001 .