Enhancement in Thermoelectric Properties of TiS2 by Sn Addition

[1]  Zhiyong Zhang,et al.  Growth AlxGa1−xN films on Si substrates by magnetron sputtering and high ammoniated two-step method , 2016 .

[2]  Chunhua Lu,et al.  Enhanced thermoelectric performance of xMoS2–TiS2 nanocomposites , 2016 .

[3]  F. Gascoin,et al.  Tuned thermoelectric properties of TiS1.5Se0.5 through copper intercalation , 2015 .

[4]  Kenji Koga,et al.  Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. , 2015, Nature materials.

[5]  V. Roddatis,et al.  Silver intercalation in SPS dense TiS2: staging and thermoelectric properties. , 2015, Dalton transactions.

[6]  N. Bao,et al.  Energy-filtering-induced high power factor in PbS-nanoparticles-embedded TiS2 , 2015 .

[7]  G. J. Snyder,et al.  Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics , 2015, Science.

[8]  T. Barbier,et al.  Electron doping and phonon scattering in Ti1+xS2 thermoelectric compounds , 2014 .

[9]  K. Koumoto,et al.  Effects of Transition Metal Substitution on the Thermoelectric Properties of Metallic (BiS)1.2(TiS2)2 Misfit Layer Sulfide , 2014, Journal of Electronic Materials.

[10]  B. Raveau,et al.  Mass Fluctuation Effect in Ti1−xNbxS2 Bulk Compounds , 2014, Journal of Electronic Materials.

[11]  S. Hébert,et al.  Thermoelectric properties in the series Ti1-xTaxS2 , 2014 .

[12]  A. Maignan,et al.  Transport and thermoelectric properties in Copper intercalated TiS2 chalcogenide , 2011 .

[13]  K. Koumoto,et al.  Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides , 2011 .

[14]  K. Koumoto,et al.  Low-Thermal-Conductivity (MS)1+x(TiS2)2 (M = Pb, Bi, Sn) Misfit Layer Compounds for Bulk Thermoelectric Materials , 2010, Materials.

[15]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[16]  Li Wang,et al.  The effect of Mg substitution for Ti on transport and thermoelectric properties of TiS2 , 2007 .

[17]  Dongzhen Li,et al.  The effects of bismuth intercalation on structure and thermal conductivity of TiS2 , 2006 .

[18]  D. Li,et al.  Improved thermoelectric properties of gadolinium intercalated compounds Gd_uxTiS_u2 at the temperaturesfrom 5 to 310 K , 2006 .

[19]  Wei Zhang,et al.  Effects of transition metal substitution on the glass-formation ability and magnetic properties of Fe62Co9.5Nd3Dy0.5B25 glassy alloy , 2002 .

[20]  Y. Kubo,et al.  Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition , 2001, cond-mat/0111063.

[21]  J. Molenda,et al.  On the defect structure and electronic properties of titanium disulfide , 1990 .

[22]  M. Sasaki,et al.  Electrical Resistivity and Thermoelectric Power of Intercalation Compounds MxTiS2 (M = Mn, Fe, Co, and Ni) , 1986 .

[23]  Y. Ohno,et al.  X-ray absorption spectra and electronic structures of post-transition-metal intercalates ofTiS2andNbS2 , 1984 .

[24]  R. Friend,et al.  Semiconductor to semimetal transition in TiS2 at 40 kbar , 1984 .

[25]  A. Lakhani,et al.  Thermoelectric power of TiSe 2-x S x mixed crystals at low temperatures , 1983 .

[26]  R. Friend,et al.  CORRIGENDUM: Stoichiometry dependence of the transport properties of TiS2 , 1981 .

[27]  G. Poon,et al.  Chapter 2 Electronic and thermoelectric properties of Half-Heusler alloys , 2001 .

[28]  H. Scherrer,et al.  Bismuth Telluride, Antimony Telluride, and Their Solid Solutions , 1995 .