Diffusion escape through a cluster of small absorbing windows

We study the first eigenvalue of the Laplace equation in a bounded domain in R d (d = 2, 3) with mixed Neumann‐Dirichlet (Zaremba) boundary conditions. The Neumann condition is imposed on most of the boundary and the Dirichlet boundary consists of a cluster of small windows. When the windows are well separated the first eigenvalue is asymptotically the sum of eigenvalues of mixed problems with a single Dirichlet window. However, when two or more Dirichlet windows cluster tightly together they interact nonlinearly. We compare our asymptotic approximation of the eigenvalue to the escape rate of simulated Brownian particles through the small windows.

[1]  H. Helmholtz Theorie der Luftschwingungen in Röhren mit offenen Enden. , 1860 .

[2]  H. Weber Ueber die Besselschen Functionen und ihre Anwendung auf die Theorie der elektrischen Ströme. , 1873 .

[3]  O. D. Kellogg Foundations of potential theory , 1934 .

[4]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[5]  Zeev Schuss,et al.  Theory and Applications of Stochastic Differential Equations , 1980 .

[6]  V. I. Fabrikant,et al.  Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering , 1991 .

[7]  E. V. D. Velde,et al.  The onset of thermal runaway in partially insulated or cooled reactors , 1992 .

[8]  Michael J. Ward,et al.  Summing Logarithmic Expansions for Singularly Perturbed Eigenvalue Problems , 1993, SIAM J. Appl. Math..

[9]  Michael J. Ward,et al.  Strong Localized Perturbations of Eigenvalue Problems , 1993, SIAM J. Appl. Math..

[10]  A. Berezhkovskii,et al.  Kinetics of escape through a small hole , 2002 .

[11]  J. Henley,et al.  Glutamate and GABA Receptors and Transporters. , 2002 .

[12]  R. Nicoll,et al.  AMPA Receptor Trafficking at Excitatory Synapses , 2003, Neuron.

[13]  Z. Schuss,et al.  Escape Through a Small Opening: Receptor Trafficking in a Synaptic Membrane , 2004 .

[14]  Z. Schuss,et al.  Narrow Escape, Part II: The Circular Disk , 2004, math-ph/0412050.

[15]  R. Eisenberg,et al.  Narrow Escape, Part I , 2004, math-ph/0412048.

[16]  Michael J. Ward,et al.  Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps , 2005, European Journal of Applied Mathematics.

[17]  Z. Schuss,et al.  Narrow Escape, Part III: Non-Smooth Domains and Riemann Surfaces , 2006 .

[18]  Z. Schuss,et al.  The narrow escape problem for diffusion in cellular microdomains , 2007, Proceedings of the National Academy of Sciences.

[19]  Paul Garabedian,et al.  Partial Differential Equations , 1964 .