Towards a predictor for CO2 plume migration using deep neural networks

[1]  W. Sung,et al.  Application of an artificial neural network in predicting the effectiveness of trapping mechanisms on CO2 sequestration in saline aquifers , 2020 .

[2]  Louis J. Durlofsky,et al.  A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems , 2019, J. Comput. Phys..

[3]  N. Zabaras,et al.  Integration of adversarial autoencoders with residual dense convolutional networks for inversion of solute transport in non-Gaussian conductivity fields , 2019, ArXiv.

[4]  Nicholas Geneva,et al.  Modeling the Dynamics of PDE Systems with Physics-Constrained Deep Auto-Regressive Networks , 2019, J. Comput. Phys..

[5]  Faruk O. Alpak,et al.  Deep learning–driven permeability estimation from 2D images , 2019, Computational Geosciences.

[6]  L. Durlofsky,et al.  Correction to: A Deep-Learning-Based Geological Parameterization for History Matching Complex Models , 2019, Mathematical Geosciences.

[7]  Zhi Zhong,et al.  Predicting CO2 Plume Migration in Heterogeneous Formations Using Conditional Deep Convolutional Generative Adversarial Network , 2019, Water Resources Research.

[8]  S. Benson,et al.  CO2 plume migration and dissolution in layered reservoirs , 2019, International Journal of Greenhouse Gas Control.

[9]  Joachim Denzler,et al.  Deep learning and process understanding for data-driven Earth system science , 2019, Nature.

[10]  Paris Perdikaris,et al.  Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data , 2019, J. Comput. Phys..

[11]  Jichun Wu,et al.  Deep Autoregressive Neural Networks for High‐Dimensional Inverse Problems in Groundwater Contaminant Source Identification , 2018, Water Resources Research.

[12]  Youzuo Lin,et al.  A data-driven CO2 leakage detection using seismic data and spatial–temporal densely connected convolutional neural networks , 2018, International Journal of Greenhouse Gas Control.

[13]  Yimin Liu,et al.  A Deep-Learning-Based Geological Parameterization for History Matching Complex Models , 2018, Mathematical Geosciences.

[14]  Jichun Wu,et al.  Deep Convolutional Encoder‐Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media , 2018, Water Resources Research.

[15]  Giorgos Tolias,et al.  Fine-Tuning CNN Image Retrieval with No Human Annotation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Sangram Ganguly,et al.  Generating High Resolution Climate Change Projections through Single Image Super-Resolution: An Abridged Version , 2018, IJCAI.

[17]  Nicholas Zabaras,et al.  Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification , 2018, J. Comput. Phys..

[18]  Chaopeng Shen,et al.  A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists , 2017, Water Resources Research.

[19]  Eric Laloy,et al.  Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network , 2017, 1710.09196.

[20]  Eric Laloy,et al.  Training‐Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network , 2017, ArXiv.

[21]  Liang Tian,et al.  Gaussian process emulators for quantifying uncertainty in CO2 spreading predictions in heterogeneous media , 2017, Comput. Geosci..

[22]  I. Couckuyt,et al.  Gaussian Processes for history-matching: application to an unconventional gas reservoir , 2017, Computational Geosciences.

[23]  W. Sung,et al.  CO2 Plume Migration With Gravitational, Viscous, and Capillary Forces in Saline Aquifers , 2016 .

[24]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Michael Andrew Christie,et al.  Surrogate accelerated sampling of reservoir models with complex structures using sparse polynomial chaos expansion , 2015 .

[26]  M. Blunt,et al.  Capillary trapping for geologic carbon dioxide storage - From pore scale physics to field scale implications , 2015 .

[27]  P. Kitanidis Persistent questions of heterogeneity, uncertainty, and scale in subsurface flow and transport , 2015 .

[28]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[29]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[30]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[31]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[32]  Rita Strack,et al.  Highly multiplexed imaging , 2015, Nature Methods.

[33]  Nicole Rusk Deep learning , 2015, Nature Methods.

[34]  Sally M. Benson,et al.  CO2 Plume Tracking and History Matching Using Multilevel Pressure Monitoring at the Illinois Basin – Decatur Project , 2014 .

[35]  Chen Zhu,et al.  Model Predictions via History Matching of CO2 Plume Migration at the Sleipner Project, Norwegian North Sea☆ , 2013 .

[36]  Louis J. Durlofsky,et al.  Reduced-order flow modeling and geological parameterization for ensemble-based data assimilation , 2013, Comput. Geosci..

[37]  Daniel M. Tartakovsky,et al.  Assessment and management of risk in subsurface hydrology: A review and perspective , 2013 .

[38]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[39]  Jan M. Nordbotten,et al.  Uncertainties in practical simulation of CO2 storage , 2012 .

[40]  H. Herzog,et al.  Lifetime of carbon capture and storage as a climate-change mitigation technology , 2012, Proceedings of the National Academy of Sciences.

[41]  Ruben Juanes,et al.  CO2 migration in saline aquifers. Part 2. Capillary and solubility trapping , 2011, Journal of Fluid Mechanics.

[42]  Karsten Pruess,et al.  Numerical Simulation Studies of the Long-term Evolution of a CO2 Plume in a Saline Aquifer with a Sloping Caprock , 2011 .

[43]  D. Oliver,et al.  Recent progress on reservoir history matching: a review , 2011 .

[44]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[45]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[46]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[47]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[48]  S. Bryant,et al.  New Trapping Mechanism in Carbon Sequestration , 2010 .

[49]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[50]  Alexandre Boucher,et al.  Applied Geostatistics with SGeMS: A User's Guide , 2009 .

[51]  Louis J. Durlofsky,et al.  Development and application of reduced‐order modeling procedures for subsurface flow simulation , 2009 .

[52]  Franklin M. Orr,et al.  Storage of CO2 in saline aquifers: Effects of gravity, viscous, and capillary forces on amount and timing of trapping , 2007 .

[53]  C. Doughty,et al.  Modeling Supercritical Carbon Dioxide Injection in Heterogeneous Porous Media , 2004, Vadose Zone Journal.

[54]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[55]  Martin T. Hagan,et al.  Neural network design , 1995 .

[56]  W. B. Whalley,et al.  The use of fractals and pseudofractals in the analysis of two-dimensional outlines: Review and further exploration , 1989 .

[57]  A. N. Chernyatin,et al.  Problem of coke (lump) size , 1968 .