Total roto-translational variation

We consider curvature depending variational models for image regularization, such as Euler’s elastica. These models are known to provide strong priors for the continuity of edges and hence have important applications in shape- and image processing. We consider a lifted convex representation of these models in the roto-translation space: in this space, curvature depending variational energies are represented by means of a convex functional defined on divergence free vector fields. The line energies are then easily extended to any scalar function. It yields a natural generalization of the total variation to curvature-dependent energies. As our main result, we show that the proposed convex representation is tight for characteristic functions of smooth shapes. We also discuss cases where this representation fails. For numerical solution, we propose a staggered grid discretization based on an averaged Raviart–Thomas finite elements approximation. This discretization is consistent, up to minor details, with the underlying continuous model. The resulting non-smooth convex optimization problem is solved using a first-order primal-dual algorithm. We illustrate the results of our numerical algorithm on various problems from shape- and image processing.

[1]  E. Acerbi,et al.  Curvature-dependent energies: The elastic case , 2017 .

[2]  Jean-Michel Morel,et al.  On a variational theory of image amodal completion , 2006 .

[3]  S. Masnou,et al.  A coarea-type formula for the relaxation of a generalized elastica functional , 2011, 1112.2090.

[4]  Remco Duits,et al.  Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2) , 2013, Journal of Mathematical Imaging and Vision.

[5]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[6]  Carlo Mantegazza,et al.  Curvature varifolds with boundary , 1996 .

[7]  Xue-Cheng Tai,et al.  A Fast Algorithm for Euler's Elastica Model Using Augmented Lagrangian Method , 2011, SIAM J. Imaging Sci..

[8]  Antonin Chambolle,et al.  On the ergodic convergence rates of a first-order primal–dual algorithm , 2016, Math. Program..

[9]  S. Delladio MINIMIZING FUNCTIONALS DEPENDING ON SURFACES AND THEIR CURVATURES: A CLASS OF VARIATIONAL PROBLEMS IN THE SETTING OF GENERALIZED GAUSS GRAPHS , 1997 .

[10]  Selim Esedoglu,et al.  Segmentation with Depth but Without Detecting Junctions , 2004, Journal of Mathematical Imaging and Vision.

[11]  Remco Duits,et al.  Crossing-Preserving Coherence-Enhancing Diffusion on Invertible Orientation Scores , 2009, International Journal of Computer Vision.

[12]  E. Acerbi,et al.  Curvature-dependent Energies , 2017 .

[13]  M. Morini,et al.  Functionals depending on curvatures with constraints , 2000, math/0006031.

[14]  Jean-Marie Mirebeau Fast-Marching Methods for Curvature Penalized Shortest Paths , 2017, Journal of Mathematical Imaging and Vision.

[15]  Vicent Caselles,et al.  Disocclusion by Joint Interpolation of Vector Fields and Gray Levels , 2003, Multiscale Model. Simul..

[16]  A. Sarti,et al.  Subjective surfaces and Riemannian mean curvature flow of graphs. , 2001 .

[17]  Xuecheng Tai,et al.  Augmented Lagrangian method for an Euler's elastica based segmentation model that promotes convex contours , 2017 .

[18]  J. Petitot,et al.  Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux , 1999 .

[19]  Joachim Weickert,et al.  Theoretical Foundations of Anisotropic Diffusion in Image Processing , 1994, Theoretical Foundations of Computer Vision.

[20]  Thomas Pock,et al.  A Convex, Lower Semicontinuous Approximation of Euler's Elastica Energy , 2015, SIAM J. Math. Anal..

[21]  Jean-Marie Mirebeau,et al.  Anisotropic Fast-Marching on Cartesian Grids Using Lattice Basis Reduction , 2012, SIAM J. Numer. Anal..

[22]  G. Bellettini,et al.  Asymptotic Properties of the Nitzberg-Mumford Variational Model for Segmentation with Depth , 2006 .

[23]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[24]  U. Sharma,et al.  Left-invariant evolutions of wavelet transforms on the Similitude Group , 2013, 1306.1800.

[25]  Giovanna Citti,et al.  Sub-Riemannian Mean Curvature Flow for Image Processing , 2015, SIAM J. Imaging Sci..

[26]  L. Ambrosio,et al.  A direct variational approach to a problem arising in image reconstruction , 2003 .

[27]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[28]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[29]  G. Bellettini,et al.  Characterization and representation of the lower semicontinuous envelope of the elastica functional , 2004 .

[30]  Georgy L. Gimel'farb,et al.  Efficient Image Segmentation Using Weighted Pseudo-Elastica , 2011, CAIP.

[31]  Jianhong Shen,et al.  Digital inpainting based on the Mumford–Shah–Euler image model , 2002, European Journal of Applied Mathematics.

[32]  Joachim Weickert,et al.  Understanding, Optimising, and Extending Data Compression with Anisotropic Diffusion , 2014, International Journal of Computer Vision.

[33]  G. Bellettini,et al.  A varifolds representation of the relaxed elastica functional , 2007 .

[34]  R. Rockafellar Integrals which are convex functionals. II , 1968 .

[35]  Remco Duits,et al.  Data-Driven Sub-Riemannian Geodesics in SE(2) , 2015, SSVM.

[36]  Leo Grady,et al.  Optimization of Weighted Curvature for Image Segmentation , 2010, ArXiv.

[37]  Maryam Yashtini,et al.  Alternating Direction Method of Multiplier for Euler's Elastica-Based Denoising , 2015, SSVM.

[38]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[39]  Daniel Cremers,et al.  The Elastic Ratio: Introducing Curvature Into Ratio-Based Image Segmentation , 2011, IEEE Transactions on Image Processing.

[40]  M. Novaga,et al.  Existence, regularity and structure of confined elasticae , 2015, 1508.05785.

[41]  Remco Duits,et al.  Curve cuspless reconstruction via sub-Riemannian geometry , 2012, 1203.3089.

[42]  Giovanna Citti,et al.  The symplectic structure of the primary visual cortex , 2008, Biological Cybernetics.

[43]  Remco Duits,et al.  Optimal Paths for Variants of the 2D and 3D Reeds–Shepp Car with Applications in Image Analysis , 2016, Journal of Mathematical Imaging and Vision.

[44]  Guy Bouchitté,et al.  Integral representation of convex functionals on a space of measures , 1988 .

[45]  Thomas Pock,et al.  Convex Relaxation of a Class of Vertex Penalizing Functionals , 2013, Journal of Mathematical Imaging and Vision.

[46]  Daniel Cremers,et al.  On a Linear Programming Approach to the Discrete Willmore Boundary Value Problem and Generalizations , 2010, Curves and Surfaces.

[47]  Antonin Chambolle,et al.  Diagonal preconditioning for first order primal-dual algorithms in convex optimization , 2011, 2011 International Conference on Computer Vision.

[48]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[49]  Laurent D. Cohen,et al.  Global Minimum for a Finsler Elastica Minimal Path Approach , 2016, International Journal of Computer Vision.

[50]  David Mumford,et al.  Filtering, Segmentation and Depth , 1993, Lecture Notes in Computer Science.

[51]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[52]  Daniel Cremers,et al.  A Linear Framework for Region-Based Image Segmentation and Inpainting Involving Curvature Penalization , 2011, International Journal of Computer Vision.

[53]  Gwenael Mercier Continuity results for TV-minimizers , 2016, 1605.09655.

[54]  S. Delladio Special generalized Gauss graphs and their application to minimization of functional involving curvatures. , 1997 .

[55]  Xue-Cheng Tai,et al.  Augmented Lagrangian method for a mean curvature based image denoising model , 2013 .

[56]  J. Weickert Mathematische Bildverarbeitung mit Ideen aus der Natur , 2012 .

[57]  Daniel Cremers,et al.  Introducing Curvature into Globally Optimal Image Segmentation: Minimum Ratio Cycles on Product Graphs , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[58]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[59]  Yu. L. Sachkov,et al.  Maxwell strata in sub-Riemannian problem on the group of motions of a plane , 2008, 0807.4731.

[60]  Maurizio Paolini,et al.  Semicontinuity and relaxation properties of a curvature depending functional in 2D , 1993 .

[61]  Maryam Yashtini,et al.  A Fast Relaxed Normal Two Split Method and an Effective Weighted TV Approach for Euler's Elastica Image Inpainting , 2016, SIAM J. Imaging Sci..

[62]  G. Bellettini,et al.  On the approximation of the elastica functional in radial symmetry , 2005 .

[63]  Riccardo March,et al.  AN IMAGE SEGMENTATION VARIATIONAL MODEL WITH FREE DISCONTINUITIES AND CONTOUR CURVATURE , 2004 .

[64]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[65]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[66]  Leo Grady,et al.  Fast global optimization of curvature , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[67]  Roland Glowinski,et al.  ADMM and Non-convex Variational Problems , 2016 .

[68]  Xue-Cheng Tai,et al.  Some Facts About Operator-Splitting and Alternating Direction Methods , 2016 .

[69]  Jean-Paul Gauthier,et al.  Image Processing in the Semidiscrete Group of Rototranslations , 2015, GSI.

[70]  Guillermo Sapiro,et al.  Filling-in by joint interpolation of vector fields and gray levels , 2001, IEEE Trans. Image Process..

[71]  Jean-Paul Gauthier,et al.  Hypoelliptic Diffusion and Human Vision: A Semidiscrete New Twist , 2014, SIAM J. Imaging Sci..