A 63-kDa Periplasmic Protein of the Endonuclear Symbiotic Bacterium Holospora obtusa Secreted to the Outside of the Bacterium during the Early Infection Process Binds Weakly to the Macronuclear DNA of the Host Paramecium caudatum

The Gram-negative bacterium Holospora obtusa is a macronucleus-specific symbiont of the ciliate Paramecium caudatum. It is known that an infection of this bacterium induces high level expressions of the host hsp60 and hsp70 genes, and the host cell acquires both heat-shock and high salt resistances. In addition, an infectious form of H. obtusa-specific 63-kDa periplasmic protein with a DNA-binding domain in its amino acid sequence is secreted into the host macronucleus after invasion into the macronucleus and remain within the nucleus. These facts suggest that binding of the 63-kDa protein to the host macronuclear DNA causes changes in the host gene expressions and enhances an environmental adaptability of the host cells. This 63-kDa protein was renamed as periplasmic region protein 1 (PRP1) to distinguish it from other proteins with similar molecular weights. To confirm whether PRP1 indeed binds to the host DNA, SDS-DNA PAGE and DNA affinity chromatography with calf thymus DNA and P. caudatum DNA were conducted and confirmed that PRP1 binds weakly to the P. caudatum DNA with a monoclonal antibody raised for the 63-kDa protein.

[1]  M. Fujishima,et al.  Mechanisms for establishing primary and secondary endosymbiosis in Paramecium , 2022, The Journal of eukaryotic microbiology.

[2]  V. Serra,et al.  Bacterial symbiosis in ciliates (Alveolata, Ciliophora): Roads traveled and those still to be taken , 2022, The Journal of eukaryotic microbiology.

[3]  M. Gelfand,et al.  Comparative Genomic Analysis of Holospora spp., Intranuclear Symbionts of Paramecia , 2018, Front. Microbiol..

[4]  Haruo Suzuki,et al.  Draft genome sequences of three Holospora species (Holospora obtusa, Holospora undulata, and Holospora elegans), endonuclear symbiotic bacteria of the ciliate Paramecium caudatum. , 2014, FEMS microbiology letters.

[5]  O. Kaltz,et al.  Parasite-mediated protection against osmotic stress for Paramecium caudatum infected by Holospora undulata is host genotype specific. , 2010, FEMS microbiology ecology.

[6]  J. Dumler,et al.  Silencing of Host Cell CYBB Gene Expression by the Nuclear Effector AnkA of the Intracellular Pathogen Anaplasma phagocytophilum , 2009, Infection and Immunity.

[7]  João C Setubal,et al.  Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology , 2009, BMC Microbiology.

[8]  M. Fujishima,et al.  Micronucleus‐Specific Bacterium Holospora elegans Irreversibly Enhances Stress Gene Expression of the Host Paramecium caudatum , 2008, The Journal of eukaryotic microbiology.

[9]  H. Dohra,et al.  Fate of the 63-kDa periplasmic protein of the infectious form of the endonuclear symbiotic bacterium Holospora obtusa during the infection process. , 2008, FEMS microbiology letters.

[10]  Y. Mizukami,et al.  One-base excess adaptor ligation method for walking uncloned genomic DNA , 2008, Applied Microbiology and Biotechnology.

[11]  M. Kawai,et al.  Paramecium caudatum acquires heat-shock resistance in ciliary movement by infection with the endonuclear symbiotic bacterium Holospora obtusa. , 2005, FEMS microbiology letters.

[12]  M. Fujishima,et al.  Differences in gene expression of the ciliate Paramecium caudatum caused by endonuclear symbiosis with Holospora obtusa, revealed using differential display reverse transcribed PCR. , 2004, FEMS microbiology letters.

[13]  M. Gorovsky,et al.  RNA Polymerase II Localizes in Tetrahymena thermophila Meiotic Micronuclei When Micronuclear Transcription Associated with Genome Rearrangement Occurs , 2004, Eukaryotic Cell.

[14]  J. Dumler,et al.  Anaplasma phagocytophilum AnkA binds to granulocyte DNA and nuclear proteins , 2004, Cellular microbiology.

[15]  M. Fujishima,et al.  The Endosymbiotic Bacterium Holospora obtusa Enhances Heat-Shock Gene Expression of the Host Paramecium caudatum , 2003, The Journal of eukaryotic microbiology.

[16]  Hiroshi Sato,et al.  Simple detection of a yeast mitochondrial DNA-binding protein, Abf2p, on SDS-DNA gels. , 2000, The Journal of general and applied microbiology.

[17]  H. Dohra,et al.  Effects of antibiotics on the early infection process of a macronuclear endosymbiotic bacterium Holospora obtusa of Paramecium caudatum. , 1999, FEMS microbiology letters.

[18]  H. Dohra,et al.  Cell Structure of the Infectious Form of Holospora, an Endonuclear Symbiotic Bacterium of the Ciliate Paramecium , 1999 .

[19]  H. Dohra,et al.  Cloning and Sequencing of Gene Coding for a Periplasmic 5.4 kDa Peptide of the Macronucleus-Specific Symbiont Holospom obtusa of the Ciliate Paramecium caudatum , 1997, Zoological science.

[20]  J. Brenner,et al.  Holospora species infecting the nuclei of Paramecium appear to belong into two groups of bacteria , 1996 .

[21]  H. Dohra,et al.  Monoclonal antibodies specific for periplasmic materials of the macronuclear specific bacterium Holospora obtusa of the ciliate Paramecium caudatum , 1994 .

[22]  M. Fujishima,et al.  Changes in Morphology,Buoyant Density and Protein Composition in Differentiation from the Reproductive Short Form to the Infectious Long Form of Holospora obtusa,a Macronucleus-Specific Symbiont of the Ciliate Paramecium caudatum , 1990 .

[23]  Hisahiro Sawabe,et al.  Scanning Electron Microscopic Observation of Differentiation from the Reproductive Short Form to the Infectious Long Form of Holospora obtusa , 1990 .

[24]  H. Görtz,et al.  Route of infection of the bacteria Holospora elegans and Holospora obtusa into the nuclei of Paramecium caudatum. , 1989, European journal of protistology.

[25]  M. Fujishima,et al.  Light and electron microscopic observations of Holospora obtusa: a macronucleus-specific bacterium of the ciliate Paramecium caudatum , 1988 .

[26]  M. Fujishima,et al.  Infection of macronuclear anlagen of Paramecium caudatum with the macronucleus-specific symbiont Holospora obtusa. , 1983, Journal of cell science.

[27]  T. Watanabe,et al.  Transplantation of germ nuclei in Paramecium caudatum. III. Role of germinal micronucleus in vegetative growth. , 1981, Experimental cell research.

[28]  S. Lacks,et al.  Nuclease detection in SDS-polyacrylamide gel electrophoresis. , 1977, Analytical biochemistry.

[29]  T. Sugai,et al.  Cytologic and autoradiographic studies of the micronucleus at meiotic prophase in Tetrahymena pyriformis. , 1974, The Journal of protozoology.

[30]  J. Preer,et al.  Kappa and other endosymbionts in Paramecium aurelia. , 1974, Bacteriological reviews.

[31]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[32]  K. Hiwatashi Determination and inheritance of mating type in Paramecium caudatum. , 1968, Genetics.

[33]  M. Fujishima,et al.  Paramecium as a Model Organism for Studies on Primary and Secondary Endosymbioses , 2016 .

[34]  S. Fokin,et al.  Diversity of Holospora Bacteria in Paramecium and Their Characterization , 2009 .

[35]  M. Fujishima Infection and Maintenance of Holospora Species in Paramecium caudatum , 2009 .

[36]  S. Fokin,et al.  Diversity of Endosymbiotic Bacteria in Paramecium , 2009 .

[37]  Dong Wook Kim,et al.  An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses , 2007, Nature Immunology.

[38]  Tsuyoshi Watanabe,et al.  Spatiotemporal sites of DNA replication in macro- and micronuclei of the ciliate Paramecium caudatum , 2004, Chromosome Research.