Biomimetic Inspiration Regarding Nano-Tribology and Materials Issues in MEMS

Tribology is omnipresent in living nature. Blinking eyes, synovial joints, white blood cells rolling along the endothelium and the foetus moving in a mother’s womb—tribological problems with evolutionary optimized solutions! This chapter introduces biology for tribologists, highlights the benefits of biomimetics (i.e., knowledge transfer from living nature to engineering), first for tribology in general and subsequently specifically for nano-tribology and materials issues in MEMS. The outlook deals with perspectives of green and sustainable nanotribology for a liveable future for all.

[1]  I. Gebeshuber Green Nanotribology and Sustainable Nanotribology in the Frame of the Global Challenges for Humankind , 2012 .

[2]  David W. Lee,et al.  Nanostructures for Coloration (Organisms other than Animals) , 2012 .

[3]  Yoseph Bar-Cohen,et al.  Biomimetics : Biologically Inspired Technologies , 2011 .

[4]  Anne Neville Special Issue on Biomimetics in Engineering , 2007 .

[5]  R. Gordon,et al.  A guide to the diatom literature for diatom nanotechnologists. , 2005, Journal of nanoscience and nanotechnology.

[6]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[7]  H. Berg,et al.  Cats' Paws and Catapults: Mechanical Worlds of Nature and People , 1998 .

[8]  S. Lim,et al.  Nano-tribology and materials in MEMS , 2013 .

[9]  David H. Guston,et al.  Encyclopedia of nanoscience and society , 2010 .

[10]  Friedrich G Barth,et al.  Spider senses - technical perfection and biology. , 2002, Zoology.

[11]  Ille C. Gebeshuber,et al.  Hyalodiscopsis plana, a sublittoral centric marine diatom, and its potential for nanotechnology as a natural zipper-like nanoclasp , 2010 .

[12]  Christian Hellmich,et al.  Biomimetics -- Materials, Structures and Processes , 2011 .

[13]  R. Jorna,et al.  Sustainable innovation: The organizational, human and knowledge dimension , 2006 .

[14]  Ille C. Gebeshuber,et al.  An attempt to reveal synergies between biology and mechanical engineering , 2008 .

[15]  M. Scherge,et al.  Biological Micro- and Nanotribology: Nature’s Solutions. NanoScience and Technology Series , 2002 .

[16]  Ille C. Gebeshuber,et al.  On the Way to the Bionic Man: A Novel Approach to MEMS Based on Biological Sensory Systems , 2011 .

[17]  Ulrich Schmid,et al.  Biomimetic MEMS to assist, enhance, and expand human sensory perceptions: a survey on state-of-the-art developments , 2011, Microtechnologies.

[18]  C. Mattheck,et al.  Bionik. Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler. Von Werner Nachtigall, 315 S., Abbildungen, DM 98,‐. Springer Verlag, Heidelberg, 1998 , 1999 .

[19]  Steven Vogel,et al.  Life's Devices: The Physical World of Animals and Plants , 1988 .

[20]  Stanislav N. Gorb,et al.  Using biological principles to design MEMS , 2000 .

[21]  William J. Devenport,et al.  Flow structure produced by the interaction and merger of a pair of co-rotating wing-tip vortices , 1999 .

[22]  Metin Sitti,et al.  Modeling and Design of Biomimetic Adhesives Inspired by Gecko Foot-Hairs , 2004, 2004 IEEE International Conference on Robotics and Biomimetics.

[23]  Steven Vogel,et al.  Comparative Biomechanics: Life's Physical World , 2003 .

[24]  Claus Mattheck,et al.  Design in Nature: Learning from Trees , 1998 .

[25]  Bharat Bhushan,et al.  Tribology Issues and Opportunities in MEMS , 1998 .

[26]  F. C. Linn,et al.  Lubrication of animal joints. I. The arthrotripsometer. , 1967, The Journal of bone and joint surgery. American volume.

[27]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Mark O. Macqueen,et al.  GEMS: A MEMS-Based Way for the Innervation of Materials , 2011 .

[29]  D. Lauffenburger,et al.  Molecular properties in cell adhesion: a physical and engineering perspective. , 2001, Trends in biotechnology.

[30]  I. Gebeshuber,et al.  Green nanotribology , 2012 .

[31]  Ille C. Gebeshuber,et al.  Biotribology inspires new technologies , 2007 .

[32]  M. Brzezinski,et al.  Atomic force microscopy study of living diatoms in ambient conditions , 2003, Journal of microscopy.

[33]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[34]  Ille C. Gebeshuber,et al.  Bioinspiration for Tribological Systems on the Micro- and Nanoscale:Dynamic, Mechanic, Surface and Structure Related Functions , 2011 .

[35]  B. Majlis,et al.  Microfluidic simulation of a colonial diatom chain reveals oscillatory movement , 2009 .

[36]  Ille C. Gebeshuber Engineering at the interface revisited , 2009 .

[37]  Ami Chand,et al.  Probing protein–protein interactions in real time , 2000, Nature Structural Biology.

[38]  S Hainsworth,et al.  Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear , 2008 .

[39]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[40]  I. C. Gebeshuber,et al.  3D Corporate Tourism: a concept for innovation in nanomaterials engineering , 2010 .

[41]  B. Bhushan,et al.  Green tribology , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  Dorian Liepmann,et al.  Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. , 2005, Lab on a chip.

[43]  F GILLOT,et al.  [Biology engineers]. , 1958, La Presse medicale.

[44]  Bharat Bhushan,et al.  Green tribology : biomimetics, energy conservation and sustainability , 2012 .

[45]  Petra Gruber,et al.  Biomimetics: Its Technological and Societal Potential , 2011 .

[46]  I. Gebeshuber,et al.  Micromechanics in biogenic hydrated silica: Hinges and interlocking devices in diatoms , 2006 .

[47]  M. Kasapi,et al.  Design complexity and fracture control in the equine hoof wall. , 1997, The Journal of experimental biology.

[48]  C. McCutchen,et al.  Mechanism of Animal Joints: Sponge-hydrostatic and Weeping Bearings , 1959, Nature.

[49]  Burhanuddin Yeop Majlis,et al.  Biomimetics in Tribology , 2011 .

[50]  Michael Nentwich,et al.  What is Accompanying Research on Nanotechnology? (NanoTrust Dossier No. 011en – December 2010) , 2010 .

[51]  R. Fettiplace,et al.  The mechanical properties of ciliary bundles of turtle cochlear hair cells. , 1985, The Journal of physiology.

[52]  Michael Nentwich,et al.  What is Accompanying Research on Nanotechnology , 2010 .

[53]  S. Vogel Life in Moving Fluids: The Physical Biology of Flow , 1981 .

[54]  Herbert Stachelberger,et al.  TRIBOLOGY IN BIOLOGY: BIOMIMETIC STUDIES ACROSS DIMENSIONS AND ACROSS FIELDS , 2009 .

[55]  Z. Rymuza Tribology of miniature systems , 1989 .

[56]  P. Lillywhite,et al.  Single photon signals and transduction in an insect eye , 2004, Journal of comparative physiology.

[57]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[58]  G. Higginson,et al.  The Lubrication of Porous Elastic Solids with Reference to the Functioning of Human Joints , 1974 .

[59]  Z. J. Wang Nature’s Flyers: Birds, Insects, and the Biomechanics of Flight , 2007 .

[60]  Herbert Stachelberger,et al.  Diatom bionanotribology--biological surfaces in relative motion: their design, friction, adhesion, lubrication and wear. , 2005, Journal of nanoscience and nanotechnology.

[61]  I. Gebeshuber,et al.  Tribology in biology , 2008 .

[62]  Duncan Dowson,et al.  Engineering at the Interface , 1992 .

[63]  Duncan Dowson,et al.  The Frictional Behavior of Human Synovial Joints—Part I: Natural Joints , 1975 .

[64]  D. J. Goetz,et al.  Leukocyte adhesion: an exquisite balance of hydrodynamic and molecular forces. , 2003, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[65]  Petra Gruber,et al.  A gaze into the crystal ball: Biomimetics in the year 2059 , 2009 .

[66]  Z. J. W. Reviewer Nature’s Flyers: Birds, Insects, and the Biomechanics of Flight , 2003 .

[67]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[68]  Manfred Drack,et al.  Treeplast Screw – a device for mounting various items to straw bale constructions , 2004 .

[69]  J. B. Thompson,et al.  In vivo nanoscale atomic force microscopy investigation of diatom adhesion properties , 2002 .

[70]  M. Kasapi,et al.  Micromechanics of the equine hoof wall: optimizing crack control and material stiffness through modulation of the properties of keratin. , 1999, The Journal of experimental biology.

[71]  Burhanuddin Yeop Majlis,et al.  Exploring the Innovational Potential of Biomimetics for Novel 3D MEMS , 2009 .

[72]  Stanislav N. Gorb,et al.  Biological Micro- and Nanotribology: Nature’s Solutions , 2010 .

[73]  Julian F V Vincent Deconstructing the design of a biological material. , 2005, Journal of theoretical biology.

[74]  Ille C. Gebeshuber,et al.  New ways of scientific publishing and accessing human knowledge inspired by transdisciplinary approaches , 2010, ArXiv.

[75]  Clément Sanchez,et al.  Biomimetism and bioinspiration as tools for the design of innovative materials and systems , 2005, Nature materials.

[76]  M. Furey,et al.  Biotribology: The Wear Resistance of Repaired Human Articular Cartilage , 2005 .

[77]  H. R. Le,et al.  Tribology and MEMS , 2006 .

[78]  Duncan Dowson,et al.  Analysis of ‘Boosted Lubrication’ in Human Joints: , 1970 .

[79]  木下 修一,et al.  Structural colors in the realm of nature , 2008 .

[80]  David G. Mann,et al.  Diatoms: Biology and Morphology of the Genera , 1990 .

[81]  R. Gordon,et al.  A Special Issue on Diatom Nanotechnology , 2005 .

[82]  Professor Dr. Friedrich G. Barth A Spider’s World , 2002, Springer Berlin Heidelberg.