BAYESIAN INFERENCE BASED ONLY ON SIMULATED LIKELIHOOD: PARTICLE FILTER ANALYSIS OF DYNAMIC ECONOMIC MODELS

We note that likelihood inference can be based on an unbiased simulation-based estimator of the likelihood when it is used inside a Metropolis–Hastings algorithm. This result has recently been introduced in statistics literature by Andrieu, Doucet, and Holenstein (2010, Journal of the Royal Statistical Society, Series B, 72, 269–342) and is perhaps surprising given the results on maximum simulated likelihood estimation. Bayesian inference based on simulated likelihood can be widely applied in microeconomics, macroeconomics, and financial econometrics. One way of generating unbiased estimates of the likelihood is through a particle filter. We illustrate these methods on four problems, producing rather generic methods. Taken together, these methods imply that if we can simulate from an economic model, we can carry out likelihood–based inference using its simulations.

[1]  C. Manski,et al.  On the Use of Simulated Frequencies to Approximate Choice Probabilities , 1981 .

[2]  Wagner A. Kamakura,et al.  Book Review: Structural Analysis of Discrete Data with Econometric Applications , 1982 .

[3]  P. Diggle,et al.  Monte Carlo Methods of Inference for Implicit Statistical Models , 1984 .

[4]  T. Mroz,et al.  The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions , 1987 .

[5]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[6]  D. McFadden,et al.  The method of simulated scores for the estimation of LDV models , 1998 .

[7]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[8]  Anthony A. Smith,et al.  Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions , 1993 .

[9]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[10]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[11]  A. Gallant,et al.  Which Moments to Match? , 1995, Econometric Theory.

[12]  Calyampudi Radhakrishna Rao,et al.  Statistical methods in finance , 1996 .

[13]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[14]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[15]  Christian Gourieroux,et al.  Simulation-based econometric methods , 1996 .

[16]  K. Judd Numerical methods in economics , 1998 .

[17]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[18]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[19]  A. Doucet,et al.  Sequential MCMC for Bayesian model selection , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.

[20]  P. Klein,et al.  Using the generalized Schur form to solve a multivariate linear rational expectations model q , 1997 .

[21]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[22]  Siddhartha Chib,et al.  MARKOV CHAIN MONTE CARLO METHODS: COMPUTATION AND INFERENCE , 2001 .

[23]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[24]  P. Fearnhead MCMC, sufficient statistics and particle filters. , 2002 .

[25]  Andrew Harvey,et al.  Forecasting, structural time series models and the Kalman filter: Selected answers to exercises , 1990 .

[26]  P. Fearnhead Markov chain Monte Carlo, Sufficient Statistics, and Particle Filters , 2002 .

[27]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[28]  Kenneth E. Train,et al.  Discrete Choice Methods with Simulation , 2016 .

[29]  Jesús Fernández-Villaverde,et al.  Comparing Solution Methods for Dynamic Equilibrium Economies , 2003 .

[30]  P. Djurić,et al.  Particle filtering , 2003, IEEE Signal Process. Mag..

[31]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[32]  Bayesian Analysis of DSGE Models , 2005 .

[33]  Melvin J. Hinich,et al.  Time Series Analysis by State Space Methods , 2001 .

[34]  Jesús Fernández-Villaverde,et al.  Convergence Properties of the Likelihood of Computed Dynamic Models , 2004 .

[35]  N. Shephard Stochastic Volatility: Selected Readings , 2005 .

[36]  Gianni Amisano,et al.  Euro Area Inflation Persistence in an Estimated Nonlinear DSGE Model , 2006, SSRN Electronic Journal.

[37]  Nicholas G. Polson,et al.  Particle Filtering , 2006 .

[38]  Fuqua,et al.  Estimating a Dynamic Oligopolistic Game with Serially Correlated Unobserved Production Costs∗ , 2008 .

[39]  Timo Teräsvirta,et al.  Multivariate GARCH models To appear in T. G. Andersen, R. A. Davis, J.-P. Kreiss and T. Mikosch, eds. Handbook of Financial Time Series. New York: Springer. , 2008 .

[40]  P. Moral,et al.  A non asymptotic variance theorem for unnormalized Feynman-Kac particle models , 2008 .

[41]  Torben G. Andersen,et al.  Stochastic volatility , 2003 .

[42]  Roman Holenstein,et al.  Particle Markov chain Monte Carlo , 2009 .

[43]  Richard A. Davis,et al.  Handbook of Financial Time Series , 2009 .

[44]  Omiros Papaspiliopoulos,et al.  Discussion on the paper of 'Particle Markov chain Monte Carlo methods' by Christophe Andrieu, Arnaud Doucet, and Roman Holenstein , 2010 .

[45]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[46]  Arnaud Doucet,et al.  On the Utility of Graphics Cards to Perform Massively Parallel Simulation of Advanced Monte Carlo Methods , 2009, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[47]  Leonidas S. Rompolis,et al.  Forecasting the mean and volatility of stock returns from option prices , 2006 .