Structure-preserving integrators for dissipative systems based on reversible– irreversible splitting

We study the optimal design of numerical integrators for dissipative systems, for which there exists an underlying thermodynamic structure known as GENERIC (general equation for the nonequilibrium reversible–irreversible coupling). We present a frame-work to construct structure-preserving integrators by splitting the system into reversible and irreversible dynamics. The reversible part, which is often degenerate and reduces to a Hamiltonian form on its symplectic leaves, is solved by using a symplectic method (e.g. Verlet) with degenerate variables being left unchanged, for which an associated modified Hamiltonian (and subsequently a modified energy) in the form of a series expansion can be obtained by using backward error analysis. The modified energy is then used to construct a modified friction matrix associated with the irreversible part in such a way that a modified degeneracy condition is satisfied. The modified irreversible dynamics can be further solved by an explicit midpoint method if not exactly solvable. Our findings are verified by various numerical experiments, demonstrating the superiority of structure-preserving integrators over alternative schemes in terms of not only the accuracy control of both energy conservation and entropy production but also the preservation of the conformal symplectic structure in the case of linearly damped systems.

[1]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[2]  Ignacio Romero,et al.  Thermodynamically consistent time‐stepping algorithms for non‐linear thermomechanical systems , 2009 .

[3]  Ernst Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[4]  Ignacio Romero,et al.  Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics: Part I: Monolithic integrators and their application to finite strain thermoelasticity , 2010 .

[5]  P. Betsch,et al.  A comparison of structure-preserving integrators for discrete thermoelastic systems , 2011 .

[6]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[7]  J. Moser Lectures on Hamiltonian Systems * , 2020 .

[8]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[9]  B. M. Fulk MATH , 1992 .

[10]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[11]  L. Jay,et al.  Solution of Index 2 Implicit Differential-Algebraic Equations by Lobatto Runge-Kutta Methods , 2003 .

[12]  D. Aronson The porous medium equation , 1986 .

[13]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  A. Zhmoginov,et al.  Variational principles for dissipative (sub)systems, with applications to the theory of linear dispersion and geometrical optics , 2016, 1610.05668.

[15]  S. Reich Backward Error Analysis for Numerical Integrators , 1999 .

[16]  D. Matthes,et al.  A variational formulation of the BDF2 method for metric gradient flows , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[17]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[18]  H. C. Öttinger GENERIC: Review of successful applications and a challenge for the future , 2018 .

[19]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[20]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[21]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[22]  I. Oppenheim Beyond Equilibrium Thermodynamics , 2006 .

[23]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[24]  Robert I McLachlan,et al.  Discrete gradient methods have an energy conservation law , 2013, 1302.4513.

[25]  Benedict J. Leimkuhler,et al.  On the numerical treatment of dissipative particle dynamics and related systems , 2014, J. Comput. Phys..

[26]  Ernst Hairer,et al.  Energy-diminishing integration of gradient systems , 2014 .

[27]  BENEDICT LEIMKUHLER,et al.  Adaptive Thermostats for Noisy Gradient Systems , 2015, SIAM J. Sci. Comput..

[28]  Peter Betsch,et al.  Energy-momentum consistent algorithms for dynamic thermomechanical problems—Application to mortar domain decomposition problems , 2011 .

[29]  P. Morrison,et al.  Structure and structure-preserving algorithms for plasma physics , 2016, 1612.06734.

[30]  Brian E. Moore,et al.  Second Order Conformal Symplectic Schemes for Damped Hamiltonian Systems , 2016, J. Sci. Comput..

[31]  Xu Wang,et al.  High Order Conformal Symplectic and Ergodic Schemes for the Stochastic Langevin Equation via Generating Functions , 2017, SIAM J. Numer. Anal..

[32]  H. Bateman On Dissipative Systems and Related Variational Principles , 1931 .

[33]  A. Bountis Dynamical Systems And Numerical Analysis , 1997, IEEE Computational Science and Engineering.

[34]  Philip J. Morrison,et al.  A paradigm for jointed Hamiltonian and dissipative systems , 1986 .

[35]  J. Marsden,et al.  Mechanical integrators derived from a discrete variational principle , 1997 .

[36]  Higher‐order energy‐momentum consistent time‐stepping schemes for dynamic finite thermo‐viscoelasticity , 2009 .

[37]  Yukihito Suzuki,et al.  GENERIC formalism and discrete variational derivative method for the two-dimensional vorticity equation , 2016, J. Comput. Appl. Math..

[38]  R. McLachlan,et al.  Conformal Hamiltonian systems , 2001 .

[39]  Brian E. Moore,et al.  Structure-preserving Exponential Runge-Kutta Methods , 2017, SIAM J. Sci. Comput..

[40]  Peter Betsch,et al.  An energy‐entropy‐consistent time stepping scheme for nonlinear thermo‐viscoelastic continua , 2016 .

[41]  Zhanxing Zhu,et al.  Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling , 2015, NIPS.

[42]  B. Leimkuhler,et al.  The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics , 2013, 1308.5814.

[43]  Allan N. Kaufman,et al.  DISSIPATIVE HAMILTONIAN SYSTEMS: A UNIFYING PRINCIPLE , 1984 .

[44]  E. Bertschinger,et al.  Time-symmetric integration in astrophysics , 2017, 1708.07266.

[45]  Hans Christian Öttinger,et al.  A Modern Course in Transport Phenomena , 2018 .

[46]  Brian J. Edwards,et al.  Thermodynamics of flowing systems : with internal microstructure , 1994 .

[47]  Benedict Leimkuhler,et al.  Assessing numerical methods for molecular and particle simulation. , 2017, Soft matter.

[48]  Assyr Abdulle,et al.  Long Time Accuracy of Lie-Trotter Splitting Methods for Langevin Dynamics , 2015, SIAM J. Numer. Anal..

[49]  David Cohen,et al.  Linear energy-preserving integrators for Poisson systems , 2011 .

[50]  G. Szamosi Variational principle in thermodynamics , 1973 .

[51]  Brian E. Moore,et al.  Conformal conservation laws and geometric integration for damped Hamiltonian PDEs , 2013, J. Comput. Phys..

[52]  G. S. Turner,et al.  Discrete gradient methods for solving ODEs numerically while preserving a first integral , 1996 .

[53]  H. C. Ottinger GENERIC: Review of successful applications and a challenge for the future , 2018, 1810.08470.

[54]  Michael Groß,et al.  Higher-order accurate and energy-momentum consistent discretisation of dynamic finite deformation thermo-viscoelasticity , 2009 .

[55]  D. Matthes,et al.  Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation , 2013, 1301.0747.

[56]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[57]  Benedict J. Leimkuhler,et al.  Pairwise adaptive thermostats for improved accuracy and stability in dissipative particle dynamics , 2016, J. Comput. Phys..

[58]  Philip J. Morrison,et al.  Bracket formulation for irreversible classical fields , 1984 .

[59]  Jürgen Moser,et al.  On quadratic symplectic mappings , 1994 .

[60]  Eero Hirvijoki,et al.  Metriplectic integrators for the Landau collision operator , 2017, 1707.01801.

[61]  Ignacio Romero,et al.  Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics Part II: fractional step methods , 2010 .

[62]  B. Leimkuhler,et al.  Robust and efficient configurational molecular sampling via Langevin dynamics. , 2013, The Journal of chemical physics.

[63]  Miroslav Grmela,et al.  Bracket formulation of dissipative fluid mechanics equations , 1984 .

[64]  Dressler,et al.  Symmetry property of the Lyapunov spectra of a class of dissipative dynamical systems with viscous damping. , 1988, Physical review. A, General physics.

[65]  Philippe Chartier,et al.  Pseudo-symplectic Runge-Kutta methods , 1998 .

[66]  B. Leimkuhler,et al.  Molecular Dynamics: With Deterministic and Stochastic Numerical Methods , 2015 .

[67]  Hans Christian Öttinger,et al.  GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems , 2018 .

[68]  Ignacio Romero,et al.  Energy–entropy–momentum integration schemes for general discrete non‐smooth dissipative problems in thermomechanics , 2017 .

[69]  B. Leimkuhler,et al.  Rational Construction of Stochastic Numerical Methods for Molecular Sampling , 2012, 1203.5428.

[70]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[71]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[72]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .