Differential fuzzy clustering for categorical data

Differential evolution has emerged as one of the fast, robust, and efficient global search heuristics of current interest. Besides its good convergence properties and suitability for parallelization, Differential evolution's main assets are its conceptual simplicity and ease of use. This paper describes an application of differential evolution to the fuzzy clustering for categorical data sets. The performance of the proposed method has been compared with the simulated annealing based fuzzy c-medoids clustering algorithm, fuzzy c-medoids, fuzzy c-modes and average linkage hierarchical clustering algorithm for two artificial and two real life categorical data sets. Statistical significance test has been carried out to establish the statistical significance of the proposed method.

[1]  W. L. Ruzzo,et al.  An empirical study on Principal Component Analysis for clustering gene expression data , 2000 .

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[4]  S. Bandyopadhyay,et al.  Nonparametric genetic clustering: comparison of validity indices , 2001, IEEE Trans. Syst. Man Cybern. Syst..

[5]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[6]  Ka Yee Yeung,et al.  Principal component analysis for clustering gene expression data , 2001, Bioinform..

[7]  David G. Wilson,et al.  2. Constrained Optimization , 2005 .

[8]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[9]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[10]  K. Stratos,et al.  Constrained Optimization , 2018, Design Optimization using MATLAB and SOLIDWORKS.

[11]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[12]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[13]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[14]  J. Bezdek,et al.  VAT: a tool for visual assessment of (cluster) tendency , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[15]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[16]  R. Krishnapuram,et al.  A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[17]  Michael K. Ng,et al.  A fuzzy k-modes algorithm for clustering categorical data , 1999, IEEE Trans. Fuzzy Syst..

[18]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[19]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[20]  Ujjwal Maulik,et al.  Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[21]  El-Ghazali Talbi,et al.  Clustering Nominal and Numerical Data: A New Distance Concept for a Hybrid Genetic Algorithm , 2004, EvoCOP.

[22]  Philip H. Ramsey Nonparametric Statistical Methods , 1974, Technometrics.