Single Step Tableaux for Modal Logics

Single Step Tableaux (SST) are the basis of a calculus for modal logics that combines different features of sequent and prefixed tableaux into a simple, modular, strongly analytic, and effective calculus for a wide range of modal logics.The paper presents a number of the computational results about SST (confluence, decidability, space complexity, modularity, etc.) and compares SST with other formalisms such as translation methods, modal resolution, and Gentzen-type tableaux. For instance, it discusses the feasibility and infeasibility of deriving decision procedures for SST and translation-based methods by replacing loop checking techniques with simpler termination checks.The complexity of searching for validity and logical consequence with SST and other methods is discussed. Minimal conditions on SST search strategies are proven to yield Pspace (and NPtime for S5 and KD45) decision procedures. The paper also presents the methodology underlying the construction of the correctness and completeness proofs.

[1]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[2]  Hans Jürgen Ohlbach,et al.  Semantics-Based Translation Methods for Modal Logics , 1991, J. Log. Comput..

[3]  Bernhard Beckert,et al.  Free Variable Tableaux for Propositional Modal Logics , 1997, TABLEAUX.

[4]  Victor W. Marek,et al.  Modal nonmonotonic logics: ranges, characterization, computation , 1991, JACM.

[5]  Ronald Fagin,et al.  Modelling knowledge and action in distributed systems , 2005, Distributed Computing.

[6]  Grigori Mints,et al.  Gentzen-type systems and resolution rules. Part I. Propositional logic , 1990, Conference on Computer Logic.

[7]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  Ullrich Hustadt,et al.  On Evaluating Decision Procedures for Modal Logics , 1997 .

[10]  Melvin Fitting,et al.  Basic modal logic , 1993 .

[11]  Ullrich Hustadt,et al.  On Evaluating Decision Procedures for Modal Logic , 1997, IJCAI.

[12]  Ian A. Mason,et al.  Metamathematics of Contexts , 1995, Fundam. Informaticae.

[13]  Angelo Montanari,et al.  A set-theoretic translation method for polymodal logics , 2004, Journal of Automated Reasoning.

[14]  Gerard Huet,et al.  Conflunt reductions: Abstract properties and applications to term rewriting systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[15]  Hans Jürgen Ohlbach,et al.  Translation Methods for Non-Classical Logics: An Overview , 1993, Log. J. IGPL.

[16]  G. F. Shvarts,et al.  Gentzen Style Systems for K45 and K45D , 1989, Logic at Botik.

[17]  Andreas Nonnengart,et al.  First-Order Modal Logic Theorem Proving and Functional Simulation , 1993, IJCAI.

[18]  Stéphane Demri,et al.  Uniform and Non Uniform Strategies for Tableaux Calculi for Modal Logics , 1995, J. Appl. Non Class. Logics.

[19]  Patrice Enjalbert,et al.  Modal Resolution in Clausal Form , 1989, Theor. Comput. Sci..

[20]  Laurent Catach,et al.  TABLEAUX: A general theorem prover for modal logics , 1991, Journal of Automated Reasoning.

[21]  Heinrich Zimmermann,et al.  Efficient Loop-Check for Backward Proof Search in Some Non-classical Propositional Logics , 1996, TABLEAUX.

[22]  Hans Jürgen Ohlbach,et al.  A Resolution Calculus for Modal Logics , 1988, CADE.

[23]  Fabio Massacci,et al.  Contextual Reasoning Is NP-Complete , 1996, AAAI/IAAI, Vol. 1.

[24]  Fausto Giunchiglia,et al.  Building Decision Procedures for Modal Logics from Propositional Decision Procedure - The Case Study of Modal K , 1996, CADE.

[25]  Renate A. Schmidt,et al.  Resolution is a Decision Procedure for Many Propositional Modal Logics , 1996, Advances in Modal Logic.

[26]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[27]  G. E. Hughes,et al.  An introduction to modal logic, 2e éd., 1 vol , 1973 .

[28]  Melvin Fitting First-order modal tableaux , 2004, Journal of Automated Reasoning.

[29]  Alessandra Russo,et al.  Generalising Propositional Modal Logic Using Labelled Deductive Systems , 1996, FroCoS.

[30]  R. A. Bull Review: Melvin Fitting, Proof Methods for Modal and Intuitionistic Logics , 1985, Journal of Symbolic Logic.

[31]  Dov M. Gabbay,et al.  Chapter 13 – Labelled Deductive Systems , 2003 .

[32]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[33]  Kazuo Matsumoto,et al.  Gentzen method in modal calculi. II , 1957 .

[34]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[35]  Fabio Massacci,et al.  Strongly Analytic Tableaux for Normal Modal Logics , 1994, CADE.

[36]  Marta Cialdea Mayer,et al.  Hintikka Multiplicities in Matrix Decision Methods for Some Propositional Modal Logics , 1997, TABLEAUX.

[37]  R. Smullyan First-Order Logic , 1968 .

[38]  Lincoln A. Wallen,et al.  Automated deduction in nonclassical logics , 1990 .

[39]  Giuseppe De Giacomo,et al.  Tableaux and Algorithms for Propositional Dynamic Logic with Converse , 1996, CADE.

[40]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[41]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[42]  Marta Cialdea Mayer,et al.  A Polynomial Translation of S4 into T and Contraction-Free Tableaux for S4 , 1997, Log. J. IGPL.

[43]  Christoph Kreitz,et al.  Converting Non-Classical Matrix Proofs into Sequent-Style Systems , 1996, CADE.

[44]  Joseph Y. Halpern,et al.  A Guide to Completeness and Complexity for Modal Logics of Knowledge and Belief , 1992, Artif. Intell..

[45]  Ian P. Gent Theory matrices (for modal logics) using alphabetical monotonicity , 1993, Stud Logica.

[46]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[47]  Gérard P. Huet,et al.  Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.