Identification of Chemotaxis Models with Volume-Filling

Chemotaxis refers to the directed movement of cells in response to a chemical signal called chemoattractant. A crucial point in the mathematical modeling of chemotactic processes is the correct description of the chemotactic sensitivity and of the production rate of the chemoattractant. In this paper, we investigate the identification of these nonlinear parameter functions in a chemotaxis model with volume-filling. We also discuss the numerical realization of Tikhonov regularization for the stable solution of the inverse problem. Our theoretical findings are supported by numerical tests.

[1]  C. Patlak Random walk with persistence and external bias , 1953 .

[2]  B. Perthame Transport Equations in Biology , 2006 .

[3]  Marco Di Francesco,et al.  Fully parabolic Keller–Segel model for chemotaxis with prevention of overcrowding , 2008 .

[4]  Maeve L. McCarthy,et al.  Identification of a chemotactic sensitivity in a coupled system. , 2007, Mathematical medicine and biology : a journal of the IMA.

[5]  Martin Burger,et al.  The Keller-Segel Model for Chemotaxis with Prevention of Overcrowding: Linear vs. Nonlinear Diffusion , 2006, SIAM J. Math. Anal..

[6]  M. Burger,et al.  Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions , 2008 .

[7]  K. Fister,et al.  Optimal control of a chemotaxis system , 2003 .

[8]  Barbara Kaltenbacher,et al.  A saddle point variational formulation for projection–regularized parameter identification , 2002, Numerische Mathematik.

[9]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[10]  K. Painter,et al.  Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .

[11]  Thomas Hillen,et al.  Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding , 2001, Adv. Appl. Math..

[12]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[13]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[14]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[15]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[16]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[17]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[18]  Dariusz Wrzosek,et al.  Volume Filling Effect in Modelling Chemotaxis , 2010 .

[19]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[20]  Philippe Laurençot,et al.  A Chemotaxis Model with Threshold Density and Degenerate Diffusion , 2005 .

[21]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[22]  V. Rajitha Chemotaxis of Escherichia coli to controlled gradients of attractants: Experiments and Mathematical modeling , 2009 .

[23]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[24]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .