Identification of Chemotaxis Models with Volume-Filling
暂无分享,去创建一个
Herbert Egger | Jan-Frederik Pietschmann | Matthias Schlottbom | H. Egger | Matthias Schlottbom | Jan-Frederik Pietschmann | M. Schlottbom
[1] C. Patlak. Random walk with persistence and external bias , 1953 .
[2] B. Perthame. Transport Equations in Biology , 2006 .
[3] Marco Di Francesco,et al. Fully parabolic Keller–Segel model for chemotaxis with prevention of overcrowding , 2008 .
[4] Maeve L. McCarthy,et al. Identification of a chemotactic sensitivity in a coupled system. , 2007, Mathematical medicine and biology : a journal of the IMA.
[5] Martin Burger,et al. The Keller-Segel Model for Chemotaxis with Prevention of Overcrowding: Linear vs. Nonlinear Diffusion , 2006, SIAM J. Math. Anal..
[6] M. Burger,et al. Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions , 2008 .
[7] K. Fister,et al. Optimal control of a chemotaxis system , 2003 .
[8] Barbara Kaltenbacher,et al. A saddle point variational formulation for projection–regularized parameter identification , 2002, Numerische Mathematik.
[9] L. Segel,et al. Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.
[10] K. Painter,et al. Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .
[11] Thomas Hillen,et al. Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding , 2001, Adv. Appl. Math..
[12] Lea Fleischer,et al. Regularization of Inverse Problems , 1996 .
[13] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[14] W. Jäger,et al. On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .
[15] K. Painter,et al. A User's Guide to Pde Models for Chemotaxis , 2022 .
[16] O. A. Ladyzhenskai︠a︡,et al. Linear and Quasi-linear Equations of Parabolic Type , 1995 .
[17] L. Segel,et al. Model for chemotaxis. , 1971, Journal of theoretical biology.
[18] Dariusz Wrzosek,et al. Volume Filling Effect in Modelling Chemotaxis , 2010 .
[19] Dirk Horstmann,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .
[20] Philippe Laurençot,et al. A Chemotaxis Model with Threshold Density and Degenerate Diffusion , 2005 .
[21] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[22] V. Rajitha. Chemotaxis of Escherichia coli to controlled gradients of attractants: Experiments and Mathematical modeling , 2009 .
[23] José A. Carrillo,et al. Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .
[24] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .