HIV-2 infects resting CD4+ T cells but not monocyte-derived dendritic cells

[1]  D. Fuchs,et al.  HIV-1 and HIV-2 Differentially Mature Plasmacytoid Dendritic Cells into IFN-Producing Cells or APCs , 2014, The Journal of Immunology.

[2]  Z. Klase,et al.  Tissue myeloid cells in SIV-infected primates acquire viral DNA through phagocytosis of infected T cells. , 2014, Immunity.

[3]  Daehyun Baek,et al.  The ribonuclease activity of SAMHD1 is required for HIV-1 restriction , 2014, Nature Medicine.

[4]  C. Rouzioux,et al.  New Sensitive One-Step Real-Time Duplex PCR Method for Group A and B HIV-2 RNA Load , 2014, Journal of Clinical Microbiology.

[5]  S. Rowland-Jones,et al.  The protective effect of HIV-2 infection: implications for understanding HIV-1 immunity. , 2014, AIDS.

[6]  S. Amigorena,et al.  Cross-presentation by human dendritic cell subsets. , 2014, Immunology letters.

[7]  F. Månsson,et al.  Effect of HIV-2 infection on HIV-1 disease progression and mortality. , 2014, AIDS.

[8]  L. Ratner,et al.  HIV-2 Vpx Protein Interacts with Interferon Regulatory Factor 5 (IRF5) and Inhibits Its Function* , 2014, The Journal of Biological Chemistry.

[9]  Mar Alvarez,et al.  Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. , 2014, Antiviral research.

[10]  F. Kirchhoff,et al.  Emerging role of the host restriction factor tetherin in viral immune sensing. , 2013, Journal of molecular biology.

[11]  I. Hurbain,et al.  The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. , 2013, Immunity.

[12]  C. Pade,et al.  Novel restriction factor RNA-associated early-stage anti-viral factor (REAF) inhibits human and simian immunodeficiency viruses , 2013, Retrovirology.

[13]  Nan Yan,et al.  Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses , 2013, Science.

[14]  O. J. Semmes,et al.  Restriction of Virus Infection but Not Catalytic dNTPase Activity Is Regulated by Phosphorylation of SAMHD1 , 2013, Journal of Virology.

[15]  Li Wu Cellular and Biochemical Mechanisms of the Retroviral Restriction Factor SAMHD1 , 2013, ISRN biochemistry.

[16]  S. Rowland-Jones,et al.  Comparing HIV‐1 and HIV‐2 infection: Lessons for viral immunopathogenesis , 2013, Reviews in medical virology.

[17]  R. Schinazi,et al.  Anti-HIV Host Factor SAMHD1 Regulates Viral Sensitivity to Nucleoside Reverse Transcriptase Inhibitors via Modulation of Cellular Deoxyribonucleoside Triphosphate (dNTP) Levels* , 2013, The Journal of Biological Chemistry.

[18]  A. E. Sousa,et al.  Monocyte and myeloid dendritic cell activation occurs throughout HIV type 2 infection, an attenuated form of HIV disease. , 2013, The Journal of infectious diseases.

[19]  M. Benkirane,et al.  Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. , 2013, Cell reports.

[20]  Baek Kim,et al.  The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. , 2013, Cell host & microbe.

[21]  F. Kirchhoff,et al.  The efficiency of Vpx-mediated SAMHD1 antagonism does not correlate with the potency of viral control in HIV-2-infected individuals , 2013, Retrovirology.

[22]  S. Neil The antiviral activities of tetherin. , 2013, Current topics in microbiology and immunology.

[23]  O. Schwartz,et al.  SAMHD1 Restricts HIV-1 Cell-to-Cell Transmission and Limits Immune Detection in Monocyte-Derived Dendritic Cells , 2012, Journal of Virology.

[24]  A. Cimarelli,et al.  Evidence for a Different Susceptibility of Primate Lentiviruses to Type I Interferons , 2012, Journal of Virology.

[25]  C. Charpentier,et al.  Association of soluble CD14 and inflammatory biomarkers with HIV-2 disease progression. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[26]  R. König,et al.  SAMHD1 restricts HIV-1 infection in resting CD4+ T cells , 2012, Nature Medicine.

[27]  Y. Crow,et al.  SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells , 2012, Retrovirology.

[28]  S. Rowland-Jones,et al.  Epitope Mapping of Broadly Neutralizing HIV-2 Human Monoclonal Antibodies , 2012, Journal of Virology.

[29]  O. Schwartz,et al.  Restricting HIV the SAMHD1 way: through nucleotide starvation , 2012, Nature Reviews Microbiology.

[30]  F. Månsson,et al.  Inhibition of HIV-1 disease progression by contemporaneous HIV-2 infection. , 2012, The New England journal of medicine.

[31]  P. Boyer,et al.  HIV-1 and HIV-2 Reverse Transcriptases: Different Mechanisms of Resistance to Nucleoside Reverse Transcriptase Inhibitors , 2012, Journal of Virology.

[32]  M. Malim,et al.  HIV Interplay with SAMHD1 , 2012, Science.

[33]  Baek Kim,et al.  SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates , 2012, Nature Immunology.

[34]  C. Charpentier,et al.  Molecular determinants of HIV-2 R5-X4 tropism in the V3 loop: development of a new genotypic tool. , 2012, The Journal of infectious diseases.

[35]  G. Gottlieb,et al.  Broad and Potent Neutralizing Antibody Responses Elicited in Natural HIV-2 Infection , 2011, Journal of Virology.

[36]  D. Littman,et al.  Hiding in Plain Sight: How HIV Evades Innate Immune Responses , 2011, Cell.

[37]  B. Sobhian,et al.  SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx , 2011, Nature.

[38]  Á. McKnight,et al.  Cellular entry via an actin and clathrin-dependent route is required for Lv2 restriction of HIV-2. , 2011, Virology.

[39]  F. Brun-Vézinet,et al.  Long-term nonprogressors and elite controllers in the ANRS CO5 HIV-2 cohort , 2011, AIDS.

[40]  M. Si-Tahar,et al.  Innate Sensing of HIV-Infected Cells , 2011, PLoS pathogens.

[41]  G. Kochs,et al.  Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. , 2011, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[42]  D. Levy,et al.  A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells , 2010, Nature.

[43]  S. Rowland-Jones,et al.  HIV-2 capsids distinguish high and low virus load patients in a West African community cohort. , 2009, Vaccine.

[44]  S. Rowland-Jones,et al.  Direct relationship between virus load and systemic immune activation in HIV-2 infection. , 2010, The Journal of infectious diseases.

[45]  H. Whittle,et al.  Undetectable plasma viral load predicts normal survival in HIV-2-infected people in a West African village , 2010, Retrovirology.

[46]  A. Bergamaschi,et al.  The Human Immunodeficiency Virus Type 2 Vpx Protein Usurps the CUL4A-DDB1DCAF1 Ubiquitin Ligase To Overcome a Postentry Block in Macrophage Infection , 2009, Journal of Virology.

[47]  J. Braun,et al.  HIV-1 and HIV-2 produce different amounts of 2-long terminal repeat circular DNA in vitro , 2008, AIDS.

[48]  F. Brun-Vézinet,et al.  HIV-2 integrase gene polymorphism and phenotypic susceptibility of HIV-2 clinical isolates to the integrase inhibitors raltegravir and elvitegravir in vitro. , 2008, The Journal of antimicrobial chemotherapy.

[49]  G. Gottlieb,et al.  Differences in proviral DNA load between HIV-1-infected and HIV-2-infected patients. , 2008, AIDS.

[50]  Mario Roederer,et al.  Frontline : Polyfunctional T cell responses are a hallmark of HIV-2 infection , 2008 .

[51]  F. Brun-Vézinet,et al.  Differences in proviral DNA load between HIV-1- and HIV-2-infected patients , 2008, AIDS.

[52]  J. Mascola,et al.  Dendritic Cells Are Less Susceptible to Human Immunodeficiency Virus Type 2 (HIV-2) Infection than to HIV-1 Infection , 2007, Journal of Virology.

[53]  A. MacNeil,et al.  Direct Evidence of Lower Viral Replication Rates In Vivo in Human Immunodeficiency Virus Type 2 (HIV-2) Infection than in HIV-1 Infection , 2007, Journal of Virology.

[54]  A. MacNeil,et al.  Comparison of Heterologous Neutralizing Antibody Responses of Human Immunodeficiency Virus Type 1 (HIV-1)- and HIV-2-Infected Senegalese Patients: Distinct Patterns of Breadth and Magnitude Distinguish HIV-1 and HIV-2 Infections , 2007, Journal of Virology.

[55]  J. Darlix,et al.  With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIVMAC , 2006, Gene Therapy.

[56]  S. Rowland-Jones,et al.  Maintenance of HIV-Specific CD4+ T Cell Help Distinguishes HIV-2 from HIV-1 Infection1 , 2006, The Journal of Immunology.

[57]  David J. Marchant,et al.  Human immunodeficiency virus types 1 and 2 have different replication kinetics in human primary macrophage culture. , 2006, The Journal of general virology.

[58]  Jan Albert,et al.  Evolution of human immunodeficiency virus type 2 coreceptor usage, autologous neutralization, envelope sequence and glycosylation. , 2005, The Journal of general virology.

[59]  G. Towers,et al.  Differential Restriction of Human Immunodeficiency Virus Type 2 and Simian Immunodeficiency Virus SIVmac by TRIM5α Alleles , 2005, Journal of Virology.

[60]  David J. Marchant,et al.  An Envelope-Determined, pH-Independent Endocytic Route of Viral Entry Determines the Susceptibility of Human Immunodeficiency Virus Type 1 (HIV-1) and HIV-2 to Lv2 Restriction , 2005, Journal of Virology.

[61]  Robin A. Weiss,et al.  The Promiscuous CC Chemokine Receptor D6 Is a Functional Coreceptor for Primary Isolates of Human Immunodeficiency Virus Type 1 (HIV-1) and HIV-2 on Astrocytes , 2005, Journal of Virology.

[62]  M. Dittmar,et al.  Role of HIV-2 envelope in Lv2-mediated restriction. , 2005, Virology.

[63]  W. Greene,et al.  A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes , 2002, Nature Biotechnology.

[64]  J. Sarthou,et al.  Reduced immune activation and T cell apoptosis in human immunodeficiency virus type 2 compared with type 1: correlation of T cell apoptosis with beta2 microglobulin concentration and disease evolution. , 2000, The Journal of infectious diseases.

[65]  S. Popper,et al.  Lower human immunodeficiency virus (HIV) type 2 viral load reflects the difference in pathogenicity of HIV-1 and HIV-2. , 1999, The Journal of infectious diseases.

[66]  S. Rowland-Jones,et al.  HIV-2 and T cell recognition. , 1998, Current opinion in immunology.

[67]  A. Adachi,et al.  Human Immunodeficiency Virus Vpx Is Required for the Early Phase of Replication in Peripheral Blood Mononuclear Cells , 1994, Microbiology and immunology.

[68]  D. Richman,et al.  The importance of nef in the induction of human immunodeficiency virus type 1 replication from primary quiescent CD4 lymphocytes , 1994, The Journal of experimental medicine.

[69]  M. Warmerdam,et al.  The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages , 1994, The Journal of experimental medicine.

[70]  M. Emerman,et al.  VPX mutants of HIV‐2 are infectious in established cell lines but display a severe defect in peripheral blood lymphocytes. , 1989, The EMBO journal.

[71]  F. Brun-Vézinet,et al.  Isolation of a new human retrovirus from West African patients with AIDS. , 1986, Science.