Improved distributed particle filters for tracking in a wireless sensor network

A novel distributed particle filter algorithm is presented, called drift homotopy likelihood bridging particle filter (DHLB-PF). The DHLB-PF is designed to surmount the degeneracy problem by employing a multilevel Markov chain Monte Carlo (MCMC) procedure after the resampling step of particle filtering. DHLB-PF considers a sequence of pertinent stationary distributions which facilitates the MCMC step as well as explores the state space with a higher degree of freedom. The proposed algorithm is tested in a multi-target tracking problem using a wireless sensor network where no fusion center is required for data processing. The observations are gathered only from the informative sensors, which are sensing useful observations of the nearby moving targets. The detection of those informative sensors, which are typically a small portion of the sensor network, is taking place by using a sparsity-aware matrix decomposition technique. Simulation results showcase that the DHLB-PF outperforms current popular tracking algorithms.

[1]  Ioannis D. Schizas,et al.  Distributed Informative-Sensor Identification via Sparsity-Aware Matrix Decomposition , 2013, IEEE Transactions on Signal Processing.

[2]  Uwe D. Hanebeck,et al.  Extended Object Tracking Based on Set-Theoretic and Stochastic Fusion , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[3]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[4]  Victor Solo,et al.  Sparse Variable PCA Using Geodesic Steepest Descent , 2008, IEEE Transactions on Signal Processing.

[5]  Vasileios Maroulas,et al.  Tracking rapid intracellular movements: A Bayesian random set approach , 2015, 1509.04841.

[6]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[7]  R D Young,et al.  Protein states and proteinquakes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Ioannis D. Schizas,et al.  Drift homotopy particle filter for non-Gaussian multi-target tracking , 2014, 17th International Conference on Information Fusion (FUSION).

[9]  Julien Mairal,et al.  Convex optimization with sparsity-inducing norms , 2011 .

[10]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[11]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[12]  Chih-Jen Lin,et al.  Projected Gradient Methods for Nonnegative Matrix Factorization , 2007, Neural Computation.

[13]  G. Eyink,et al.  Accelerated Monte Carlo for Optimal Estimation of Time Series , 2005 .

[14]  Mazda A. Marvasti,et al.  Cusum techniques for timeslot sequences with applications to network surveillance , 2009, Comput. Stat. Data Anal..

[15]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Uwe D. Hanebeck,et al.  The Kernel-SME filter for multiple target tracking , 2012, Proceedings of the 16th International Conference on Information Fusion.

[17]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[18]  Mark Coates,et al.  Distributed particle filters for sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[19]  Simon J. Godsill,et al.  Improvement Strategies for Monte Carlo Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[20]  Jonathan Weare,et al.  Particle filtering with path sampling and an application to a bimodal ocean current model , 2009, J. Comput. Phys..

[21]  Kiseon Kim,et al.  A new fusion formula and its application to continuous-time linear systems with multisensor environment , 2007, Comput. Stat. Data Anal..

[22]  Pramod K. Varshney,et al.  Tracking in Wireless Sensor Networks Using Particle Filtering: Physical Layer Considerations , 2009, IEEE Transactions on Signal Processing.

[23]  R. Zwanzig,et al.  Diffusion in a rough potential. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Stull,et al.  Kalman Filter and Analog Schemes to Postprocess Numerical Weather Predictions , 2011 .

[25]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[26]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[27]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[28]  Simo Särkkä,et al.  Adaptive Metropolis algorithm using variational Bayesian adaptive Kalman filter , 2013, Comput. Stat. Data Anal..

[29]  Ioannis D. Schizas,et al.  A learning drift homotopy particle filter , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[30]  Vasileios Maroulas,et al.  Improved particle filters for multi-target tracking , 2012, J. Comput. Phys..

[31]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[32]  Panos Stinis,et al.  CONDITIONAL PATH SAMPLING FOR STOCHASTIC DIFFERENTIAL EQUATIONS THROUGH DRIFT RELAXATION , 2011 .

[33]  A. Doucet,et al.  Efficient Block Sampling Strategies for Sequential Monte Carlo Methods , 2006 .

[34]  Lan Wu,et al.  Nonnegative-lasso and application in index tracking , 2014, Comput. Stat. Data Anal..

[35]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[36]  R. Olfati-Saber,et al.  Distributed Kalman Filter with Embedded Consensus Filters , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[37]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[38]  Vasileios Maroulas,et al.  Tracking spawning objects , 2013 .

[39]  Petar M. Djuric,et al.  Distributed particle filtering in agent networks: A survey, classification, and comparison , 2013, IEEE Signal Processing Magazine.

[40]  Ioannis D. Schizas,et al.  Distributed spatio-temporal association and tracking of multiple targets using multiple sensors , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[41]  Konstantinos Spiliopoulos,et al.  Maximum likelihood estimation for small noise multiscale diffusions , 2013, 1301.6413.

[42]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[43]  Sanjay Jha,et al.  Detection and Tracking Using Particle-Filter-Based Wireless Sensor Networks , 2010, IEEE Transactions on Mobile Computing.

[44]  Zhigang Luo,et al.  NeNMF: An Optimal Gradient Method for Nonnegative Matrix Factorization , 2012, IEEE Transactions on Signal Processing.

[45]  Edward J. Wegman,et al.  Nonparametric density estimation of streaming data using orthogonal series , 2009, Comput. Stat. Data Anal..

[46]  Ioannis D. Schizas,et al.  Power-Efficient Dimensionality Reduction for Distributed Channel-Aware Kalman Tracking Using WSNs , 2009, IEEE Transactions on Signal Processing.