Witness of unsatisfiability for a random 3-satisfiability formula

The random 3-satisfiability (3-SAT) problem is in the unsatisfiable (UNSAT) phase when the clause density α exceeds a critical value α(s)≈4.267. Rigorously proving the unsatisfiability of a given large 3-SAT instance is, however, extremely difficult. In this paper we apply the mean-field theory of statistical physics to the unsatisfiability problem, and show that a reduction to 3-XORSAT, which permits the construction of a specific type of UNSAT witnesses (Feige-Kim-Ofek witnesses), is possible when the clause density α>19. We then construct Feige-Kim-Ofek witnesses for single 3-SAT instances through a simple random sampling algorithm and a focused local search algorithm. The random sampling algorithm works only when α scales at least linearly with the variable number N, but the focused local search algorithm works for clause density α>cN(b) with b≈0.59 and prefactor c≈8. The exponent b can be further decreased by enlarging the single parameter S of the focused local search algorithm.

[1]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[3]  Haijun Zhou,et al.  Partition function loop series for a general graphical model: free-energy corrections and message-passing equations , 2011, ArXiv.

[4]  Frank van Harmelen,et al.  Handbook of Knowledge Representation , 2008, Handbook of Knowledge Representation.

[5]  Uriel Feige,et al.  Easily Refutable Subformulas of Large Random 3CNF Formulas , 2004, ICALP.

[6]  Michael Krivelevich,et al.  Efficient Recognition of Random Unsatisfiable k-SAT Instances by Spectral Methods , 2001, STACS.

[7]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[8]  Uriel Feige,et al.  Proceedings of the thirty-ninth annual ACM symposium on Theory of computing , 2007, STOC 2007.

[9]  Monasson,et al.  Entropy of the K-satisfiability problem. , 1996, Physical review letters.

[10]  Lance Fortnow,et al.  Proceedings of the 55th Annual ACM Symposium on Theory of Computing , 2011, STOC.

[11]  M. Mézard,et al.  Two Solutions to Diluted p-Spin Models and XORSAT Problems , 2003 .

[12]  P. Gács,et al.  Algorithms , 1992 .

[13]  Haijun Zhou,et al.  Message passing for vertex covers , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[15]  B. Bollobás,et al.  Combinatorics, Probability and Computing , 2006 .

[16]  Haijun Zhou,et al.  Region Graph Partition Function Expansion and Approximate Free Energy Landscapes: Theory and Some Numerical Results , 2012, 1204.1818.

[17]  Pekka Orponen,et al.  Circumspect descent prevails in solving random constraint satisfaction problems , 2007, Proceedings of the National Academy of Sciences.

[18]  M. Mézard,et al.  The Bethe lattice spin glass revisited , 2000, cond-mat/0009418.

[19]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.

[20]  S. Kak Information, physics, and computation , 1996 .

[21]  M. Mézard,et al.  The Cavity Method at Zero Temperature , 2002, cond-mat/0207121.

[22]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[23]  Andrea Montanari,et al.  Instability of one-step replica-symmetry-broken phase in satisfiability problems , 2003, ArXiv.

[24]  Amin Coja-Oghlan,et al.  Strong Refutation Heuristics for Random k-SAT , 2006, Combinatorics, Probability and Computing.