Physics-informed machine learning with high-throughput design module for evaluating rupture life and guiding design of oxide/oxide ceramic matrix composites

[1]  Xueqiang Cao,et al.  Life assessment of thermomechanical fatigue in a woven SiC/SiC ceramic matrix composite with an environmental barrier coating at elevated temperature , 2023, International Journal of Fatigue.

[2]  Xiaoguang Yang,et al.  A novel creep-fatigue life evaluation method for ceramic-composites components , 2023, International Journal of Mechanical Sciences.

[3]  D. Shi,et al.  A physics-informed machine learning approach for notch fatigue evaluation of alloys used in aerospace , 2023, International Journal of Fatigue.

[4]  Xiaoguang Yang,et al.  In-situ study on compressive behaviors of different types of 3D SiC/SiC composites using X-ray computed tomography and digital image correlation , 2023, Journal of Materials Research and Technology.

[5]  Yefeng Chen,et al.  Creep lifetime prediction of 9% Cr martensitic heat-resistant steel based on ensemble learning method , 2022, Journal of Materials Research and Technology.

[6]  A. Milani,et al.  A highly interpretable materials informatics approach for predicting microstructure-property relationship in fabric composites , 2022, Composites Science and Technology.

[7]  Chenchong Wang,et al.  High-throughput Map Design of Creep Life in Low-Alloy Steels by Integrating Machine Learning with a Genetic Algorithm , 2021, Materials & Design.

[8]  Xiaoguang Yang,et al.  Multiscale Investigation on Fatigue Properties and Damage of a 3D Braided SiC/SiC + PyC/SiC Composites in the Full Stress Range at 1300 °C , 2021, Journal of the European Ceramic Society.

[9]  S. Kalidindi,et al.  Reduced-order models for microstructure-sensitive effective thermal conductivity of woven ceramic matrix composites with residual porosity , 2021 .

[10]  B. Šavija,et al.  Interpretable Ensemble-Machine-Learning models for predicting creep behavior of concrete , 2021, Cement and Concrete Composites.

[11]  Xiaoguang Yang,et al.  Experimental and numerical study on creep behaviors of 2D twill woven quartz fiber/silica matrix composites , 2021, Ceramics International.

[12]  R. Bhatt,et al.  Creep behavior and failure mechanisms of CVI and PIP SiC/SiC composites at temperatures to 1650 °C in air , 2021 .

[13]  Xiaoguang Yang,et al.  In situ investigation of failure in 3D braided SiCf/SiC composites under flexural loading , 2021 .

[14]  A. Chattopadhyay,et al.  Modeling creep behavior in ceramic matrix composites , 2021 .

[15]  Xiaoguang Yang,et al.  On the tensile behaviors of 2D twill woven SiO2f/SiO2 composites at ambient and elevated temperatures: Mesoscale analysis and in situ experimental investigation , 2021 .

[16]  Huang Yuan,et al.  Damage modeling of oxide/oxide ceramic matrix composites under cyclic loading conditions , 2020 .

[17]  Muhammad Ali Imron,et al.  Improving Algorithm Accuracy K-Nearest Neighbor Using Z-Score Normalization and Particle Swarm Optimization to Predict Customer Churn , 2020, Journal of Soft Computing Exploration.

[18]  Zhengmao Yang,et al.  Investigation of long-term thermal aging-induced damage in oxide/oxide ceramic matrix composites , 2020 .

[19]  Fuji Wang,et al.  A mechanistic model for tensile property of continuous carbon fiber reinforced plastic composites built by fused filament fabrication , 2020 .

[20]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[21]  Huang Yuan,et al.  Evolution and characterization of cyclic thermal shock-induced thermomechanical damage in oxide/oxide ceramics matrix composites , 2019, International Journal of Fatigue.

[22]  J. Lamon Review: creep of fibre-reinforced ceramic matrix composites , 2019, International Materials Reviews.

[23]  C. Przybyla,et al.  Creep of a Nextel™720/alumina ceramic composite containing an array of small holes at 1200°C in air and in steam , 2018, International Journal of Applied Ceramic Technology.

[24]  S. Mall,et al.  Creep-rupture behaviour of notched oxide/oxide ceramic matrix composite in combustion environment , 2018 .

[25]  Tie-Yan Liu,et al.  LightGBM: A Highly Efficient Gradient Boosting Decision Tree , 2017, NIPS.

[26]  Han Liu,et al.  Semi-random partitioning of data into training and test sets in granular computing context , 2017, GRC 2017.

[27]  Will Usher,et al.  SALib: An open-source Python library for Sensitivity Analysis , 2017, J. Open Source Softw..

[28]  K. Rezwan,et al.  Tensile and creep performance of a novel mullite fiber at high temperatures , 2015 .

[29]  Narottam P. Bansal,et al.  Oxide/Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project , 2015 .

[30]  M. Ruggles‐Wrenn,et al.  Creep in Interlaminar Shear of an Oxide/Oxide Ceramic Matrix Composite at Elevated Temperature , 2014 .

[31]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[32]  Toon Calders,et al.  Data preprocessing techniques for classification without discrimination , 2011, Knowledge and Information Systems.

[33]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[34]  M. Ruggles‐Wrenn,et al.  Creep behavior of Nextel™720/alumina–mullite ceramic composite with ±45° fiber orientation at 1200 °C ☆ , 2010 .

[35]  Janet B. Davis,et al.  Effects of Steam Environment on Creep Behavior of Nextel™610/Monazite/Alumina Composite at 1,100°C , 2009 .

[36]  Lai-fei Cheng,et al.  Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber preforms , 2009 .

[37]  M. Ruggles‐Wrenn,et al.  Creep behavior of Nextel™720/alumina ceramic composite with ±45° fiber orientation at 1200 °C , 2008 .

[38]  Carlos G. Levi,et al.  Effects of Matrix Porosity on the Mechanical Properties of a Porous‐Matrix, All‐Oxide Ceramic Composite , 2001 .

[39]  D. Wilson,et al.  High performance oxide fibers for metal and ceramic composites , 2001 .

[40]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[41]  Michael W. Browne,et al.  Cross-Validation Methods. , 2000, Journal of mathematical psychology.

[42]  Stefano Tarantola,et al.  A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output , 1999, Technometrics.

[43]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[44]  R. McMeeking,et al.  Creep models for metal matrix composites with long brittle fibers , 1995 .

[45]  K. Milička,et al.  The relation between minimum creep rate and time to fracture , 1976 .

[46]  F. Larson,et al.  A Time-Temperature Relationship for Rupture and Creep Stresses , 1952, Journal of Fluids Engineering.

[47]  Megan L. Harkins Creep of Nextel 720/Alumina Ceramic Matrix Composite with Diamond-Drilled Effusion Holes at 1200°C in Air and in Steam , 2019 .

[48]  E. Sackett,et al.  Mechanical characterisation of a fibre reinforced oxide/oxide ceramic matrix composite , 2015 .

[49]  T. Ishikawa Advances in inorganic fibers , 2005 .

[50]  M. Roode,et al.  Ceramic Matrix Composite Combustor Liners: A Summary of Field Evaluations , 2005 .

[51]  L. Breiman Random Forests , 2001, Machine Learning.