Calibration of a time-domain network analyzer: a new approach

This paper deals with the calibration of time-domain network analyzers operating in the bandwidth dc-20 GHz. After identification and experimental estimation of the error sources, an approach based on a standard TRL (thru-reflect-line) calibration procedure, adapted to bidirectional (two generators and two samplers) time-domain measurement systems for the correction of systematic errors, is developed. Optimal conditions for the minimization of random errors are also carried out. Next, the measurement system dynamic range and repeatability are accurately characterized. Finally, experimental results obtained on coaxial attenuators and a mismatched lossy microstrip line demonstrate the accuracy of the method.

[1]  Sedki M. Riad,et al.  An optimization technique for iterative frequency-domain deconvolution , 1990 .

[2]  S. M. Riad,et al.  Calibration of time domain network analyzers , 1993 .

[3]  William L. Gans Present capabilities of the NBS Automatic Pulse Measurement System , 1976, IEEE Transactions on Instrumentation and Measurement.

[4]  P. Ferrari,et al.  Time domain characterization of lossy arbitrary characteristic impedance transmission lines , 1994, IEEE Microwave and Guided Wave Letters.

[5]  Daniël De Zutter,et al.  Calibration and normalization of time domain network analyzer measurements , 1994 .

[6]  Peter G. Mitchell,et al.  Time-Domain Measurements of Microwave Components , 1973 .

[7]  B. Schiek,et al.  A generalized theory and new calibration procedures for network analyzer self-calibration , 1991 .

[8]  V. K. Tripathi,et al.  Calibration methods for time domain network analysis , 1993 .

[9]  B. Flechet,et al.  A complete calibration procedure for time domain network analyzers , 1992, 1992 IEEE Microwave Symposium Digest MTT-S.

[10]  G. Ross,et al.  Current Status of Time-Domain Metrology in Material and Distributed Network Research , 1972 .

[11]  S. Riad,et al.  Computing the complete fft of a step-like waveform , 1986, IEEE Transactions on Instrumentation and Measurement.

[12]  Y. Konishi,et al.  A time-domain millimeter-wave vector network analyzer , 1992, IEEE Microwave and Guided Wave Letters.

[13]  C. H. Dix,et al.  Microwave Measurements , 1969 .

[14]  A. M. Nicolson Broad-Band Microwave Transmission Characteristics from a Single Measurement of the Transient Response , 1968 .

[15]  W. L. Gans,et al.  Continuous and discrete Fourier transforms of steplike waveforms , 1982, IEEE Transactions on Instrumentation and Measurement.

[16]  A. M. Nicolson Forming the fast Fourier transform of a step response in time-domain metrology , 1973 .

[17]  L. Susman,et al.  Applications of Time-Domain Metrology to the Automation of Broad-Band Microwave Measurements , 1972 .

[18]  N. Nahman,et al.  Deconvolution of causal pulse and transient data , 1990, 7th IEEE Conference on Instrumentation and Measurement Technology.

[20]  G. F. Engen,et al.  Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer , 1979 .

[21]  A. M. Nicolson,et al.  Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques , 1970 .

[22]  Brian J. Elliott High-sensitivity picosecond time-domain reflectometry , 1976, IEEE Transactions on Instrumentation and Measurement.

[23]  W. Gans The Measurement and Deconvolution of Time Jitter in Equivalent-Time Waveform Samplers , 1983, IEEE Transactions on Instrumentation and Measurement.

[24]  M. Kamegawa,et al.  A 2.3-ps time-domain reflectometer for millimeter-wave network analysis , 1991, IEEE Microwave and Guided Wave Letters.

[25]  Peter G. Mitchell,et al.  Extensions of Time Domain Metrology above 10 GHz to Materials Measurements , 1974 .

[26]  Sedki M. Riad,et al.  An Optimization Criterion for Iterative Deconvolution , 1983, IEEE Transactions on Instrumentation and Measurement.