Continuous-Scale Kinetic Fluid Simulation

Kinetic approaches, i.e., methods based on the lattice Boltzmann equations, have long been recognized as an appealing alternative for solving incompressible Navier-Stokes equations in computational fluid dynamics. However, such approaches have not been widely adopted in graphics mainly due to the underlying inaccuracy, instability and inflexibility. In this paper, we try to tackle these problems in order to make kinetic approaches practical for graphical applications. To achieve more accurate and stable simulations, we propose to employ the non-orthogonal central-moment-relaxation model, where we develop a novel adaptive relaxation method to retain both stability and accuracy in turbulent flows. To achieve flexibility, we propose a novel continuous-scale formulation that enables samples at arbitrary resolutions to easily communicate with each other in a more continuous sense and with loose geometrical constraints, which allows efficient and adaptive sample construction to better match the physical scale. Such a capability directly leads to an automatic sample construction which generates static and dynamic scales at initialization and during simulation, respectively. This effectively makes our method suitable for simulating turbulent flows with arbitrary geometrical boundaries. Our simulation results with applications to smoke animations show the benefits of our method, with comparisons for justification and verification.

[1]  J. Korvink,et al.  Cascaded digital lattice Boltzmann automata for high Reynolds number flow. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Y. T. Chew,et al.  Application of multi-block approach in the immersed boundary-lattice Boltzmann method for viscous fluid flows , 2006, J. Comput. Phys..

[3]  Chenfanfu Jiang,et al.  A polynomial particle-in-cell method , 2017, ACM Trans. Graph..

[4]  Jonas Latt,et al.  Hydrodynamic limit of lattice Boltzmann equations , 2007 .

[5]  Robert Bridson,et al.  Linear-time smoke animation with vortex sheet meshes , 2012, SCA '12.

[6]  Arie E. Kaufman,et al.  Lattice-based flow field modeling , 2004, IEEE Transactions on Visualization and Computer Graphics.

[7]  Xiaopei Liu,et al.  A Unified Detail-Preserving Liquid Simulation by Two-Phase Lattice Boltzmann Modeling , 2017, IEEE Transactions on Visualization and Computer Graphics.

[8]  Nils Thürey,et al.  Data-driven synthesis of smoke flows with CNN-based feature descriptors , 2017, ACM Trans. Graph..

[9]  Ronald Fedkiw,et al.  A new grid structure for domain extension , 2013, ACM Trans. Graph..

[10]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[11]  Greg Turk,et al.  Hybrid smoothed particle hydrodynamics , 2011, SCA '11.

[12]  Hyeongseok Ko,et al.  Detail-preserving fully-Eulerian interface tracking framework , 2010, SIGGRAPH 2010.

[13]  Keenan Crane,et al.  Energy-preserving integrators for fluid animation , 2009, ACM Trans. Graph..

[14]  Sang Il Park,et al.  Vortex fluid for gaseous phenomena , 2005, SCA '05.

[15]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[16]  W. Shyy,et al.  A multi‐block lattice Boltzmann method for viscous fluid flows , 2002 .

[17]  Ulrich Rüde,et al.  Hybrid Parallelization Techniques for Lattice Boltzmann Free Surface Flows , 2009 .

[18]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[19]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[20]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[21]  Robert Bridson,et al.  Evolving sub-grid turbulence for smoke animation , 2008, SCA '08.

[22]  Robert Bridson,et al.  Restoring the missing vorticity in advection-projection fluid solvers , 2015, ACM Trans. Graph..

[23]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[24]  M. Krafczyk,et al.  Turbulent jet computations based on MRT and Cascaded Lattice Boltzmann models , 2012, Comput. Math. Appl..

[25]  R. Courant,et al.  On the Partial Difference Equations, of Mathematical Physics , 2015 .

[26]  D. d'Humières,et al.  Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Robert Bridson,et al.  Curl-noise for procedural fluid flow , 2007, ACM Trans. Graph..

[28]  Eftychios Sifakis,et al.  SPGrid: a sparse paged grid structure applied to adaptive smoke simulation , 2014, ACM Trans. Graph..

[29]  Markus H. Gross,et al.  Lagrangian vortex sheets for animating fluids , 2012, ACM Trans. Graph..

[30]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[31]  Sauro Succi,et al.  A Generalised Lattice Boltzmann Equation on Unstructured Grids , 2007 .

[32]  Orestis Malaspinas,et al.  Advances in multi-domain lattice Boltzmann grid refinement , 2012, J. Comput. Phys..

[33]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[34]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[35]  Sarah Tariq,et al.  Scalable fluid simulation using anisotropic turbulence particles , 2010, ACM Trans. Graph..

[36]  Chi-Wing Fu,et al.  Turbulence Simulation by Adaptive Multi-Relaxation Lattice Boltzmann Modeling , 2014, IEEE Transactions on Visualization and Computer Graphics.

[37]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[38]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[39]  Hyeong-Seok Ko,et al.  Detail-preserving fully-Eulerian interface tracking framework , 2010, ACM Trans. Graph..

[40]  Chang Shu,et al.  Lattice Boltzmann and Finite Volume Simulation of Inviscid Compressible Flows with Curved Boundary , 2010 .

[41]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, ACM Trans. Graph..

[42]  Barbara Solenthaler,et al.  Data-driven fluid simulations using regression forests , 2015, ACM Trans. Graph..

[43]  Robert Bridson,et al.  A PPPM fast summation method for fluids and beyond , 2014, ACM Trans. Graph..

[44]  Doug L. James,et al.  Wavelet turbulence for fluid simulation , 2008, SIGGRAPH 2008.

[45]  A. De Rosis,et al.  Nonorthogonal central-moments-based lattice Boltzmann scheme in three dimensions. , 2017, Physical review. E.

[46]  Robert Bridson,et al.  Resolving fluid boundary layers with particle strength exchange and weak adaptivity , 2016, ACM Trans. Graph..

[47]  Ch. Hirsch,et al.  Fundamentals Of Computational Fluid Dynamics , 2016 .

[48]  Ye Zhao,et al.  Flow simulation with locally-refined LBM , 2007, SI3D.

[49]  Markus H. Gross,et al.  Synthetic turbulence using artificial boundary layers , 2009, ACM Trans. Graph..

[50]  Rong Wang,et al.  Observations on the fifth-order WENO method with non-uniform meshes , 2008, Appl. Math. Comput..

[51]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[52]  Ulrich Rüde,et al.  Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids , 2009 .

[53]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[54]  B. Chopard,et al.  Theory and applications of an alternative lattice Boltzmann grid refinement algorithm. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Ying He,et al.  Adapted unstructured LBM for flow simulation on curved surfaces , 2005, SCA '05.

[56]  Andreas Kolb,et al.  Infinite continuous adaptivity for incompressible SPH , 2017, ACM Trans. Graph..

[57]  Ignacio Llamas,et al.  FlowFixer: Using BFECC for Fluid Simulation , 2005, NPH.

[58]  Hyeong-Seok Ko,et al.  Stable but nondissipative water , 2005, TOGS.

[59]  R. Fedkiw,et al.  A novel algorithm for incompressible flow using only a coarse grid projection , 2010, ACM Trans. Graph..

[60]  Klaus Mueller,et al.  Visual Simulation of Heat Shimmering and Mirage , 2007, IEEE Transactions on Visualization and Computer Graphics.

[61]  Pradeep Dubey,et al.  Large-scale fluid simulation using velocity-vorticity domain decomposition , 2012, ACM Trans. Graph..

[62]  O. Filippova,et al.  Grid Refinement for Lattice-BGK Models , 1998 .

[63]  Peter Schröder,et al.  Schrödinger's smoke , 2016, ACM Trans. Graph..

[64]  Ulrich Rüde,et al.  Free Surface Flows with Moving and Deforming Objects for LBM , 2006 .

[65]  Ronghou Liu,et al.  Binary droplet collision simulations by a multiphase cascaded lattice Boltzmann method , 2014 .

[66]  J. Steinhoff,et al.  Modification of the Euler equations for ‘‘vorticity confinement’’: Application to the computation of interacting vortex rings , 1994 .

[67]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..