Spin Physics with a fixed-target experiment at the LHC

The multi-TeV proton and ion beams of the LHC would allow for the most energetic fixed-target experiment ever. In particular, $pp$, $p$d and $p$A collisions could be performed at $\sqrt{s_{NN}}$ = 115~GeV, as well as Pb$p$ and PbA collisions at $\sqrt{s_{NN}}$ = 72~GeV, in a parasitic way by making use of the already existing LHCb and ALICE detectors in fixed-target mode. This would offer the possibility to carry out a ground-breaking physics program, to study the nucleon and nuclear structure at high $x$, the spin content of the nucleon and the phases of the nuclear matter from a new rapidity viewpoint. In this talk I focus on the spin physics axis of the full program developed so far by the AFTER@LHC study group.

[1]  L. Massacrier,et al.  Single-transverse-spin asymmetries in exclusive photo-production of J/ψ in ultra-peripheral collisions in the fixed-target mode at the LHC and in the collider mode at RHIC , 2018, Physics Letters B.

[2]  D. Kikola,et al.  Estimation of the freeze-out parameters reachable in a fixed-target experiment at the CERN Large Hadron Collider , 2018, Physical Review C.

[3]  J. Seixas,et al.  A fixed-target programme at the LHC: Physics case and projected performances for heavy-ion, hadron, spin and astroparticle studies , 2018, 1807.00603.

[4]  S. Brodsky,et al.  The gluon and charm content of the deuteron , 2018, Physics Letters B.

[5]  Jr.,et al.  Single-spin asymmetry of J/ψ production in p+p , p+Al , and p+Au collisions with transversely polarized proton beams at sNN=200  GeV , 2018, Physical Review D.

[6]  M. M. Jaime,et al.  Exclusive vector meson photoproduction in fixed-target collisions at the LHC , 2018, The European Physical Journal C.

[7]  I. Karpenko Rapidity scan in heavy ion collisions at √ s NN = 72 GeV using a viscous hydro + cascade model , 2018 .

[8]  U. D'alesio,et al.  Probing the gluon Sivers function in p↑p→J/ψ X and p↑p→DX , 2017 .

[9]  J. Seixas,et al.  Heavy-Ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell–Yan Production , 2017, 1703.03726.

[10]  A. Signori,et al.  Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC) , 2017, Few-Body Systems.

[11]  C. Baus,et al.  The impact of a fixed-target experiment with LHC beam for astroparticle physics , 2016 .

[12]  Y.Feng,et al.  Next-to-Leading Order Differential Cross Sections for , , and Production in Proton-Proton Collisions at a Fixed-Target Experiment Using the LHC Beams , 2015, 1510.05277.

[13]  D. Kikoła Prospects for Open Heavy Flavor Measurements in Heavy Ion and Collisions in a Fixed-Target Experiment at the LHC , 2015 .

[14]  A. Kurepin,et al.  Quarkonium Production and Proposal of the New Experiments on Fixed Target at the LHC , 2015 .

[15]  Franccois Arleo,et al.  Quarkonium Suppression from Coherent Energy Loss in Fixed-Target Experiments Using LHC Beams , 2015, 1504.07428.

[16]  H. Shao,et al.  Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC) , 2015, 1504.06531.

[17]  S. Brodsky,et al.  A Review of the Intrinsic Heavy Quark Content of the Nucleon , 2015, 1504.06287.

[18]  F. Fleuret,et al.  Feasibility Studies for Quarkonium Production at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC) , 2015, 1504.05145.

[19]  C. Pisano,et al.  The gluon Sivers distribution: Status and future prospects , 2015, 1504.04332.

[20]  Torino,et al.  Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a TMD factorisation scheme , 2015, 1504.03791.

[21]  J. Lansberg,et al.  Lepton-pair production in ultraperipheral collisions at AFTER@LHC , 2015, 1504.02733.

[22]  F. Ceccopieri Studies of backward particle production with A Fixed-Target Experiment using the LHC beams , 2015, 1503.05813.

[23]  A. Metz,et al.  Transverse Single-Spin Asymmetries in Proton-Proton Collisions at the AFTER@LHC Experiment , 2015, 1502.04021.

[24]  S. Forte,et al.  A first unbiased global determination of polarized PDFs and their uncertainties , 2014, 1406.5539.

[25]  Zhong-Bo Kang,et al.  QCD Evolution of the Sivers Asymmetry , 2014, 1401.5078.

[26]  U. Uggerhøj,et al.  Spin physics at a fixed-target experiment at the LHC (AFTER@LHC) , 2013, Physics of Particles and Nuclei.

[27]  U. Uggerhøj,et al.  Ultra-relativistic heavy–ion physics with AFTER@LHC , 2012, 1211.1294.

[28]  F. Fleuret,et al.  Physics Opportunities of a Fixed-Target Experiment using the LHC Beams , 2012, 1202.6585.

[29]  C. Pisano,et al.  Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER , 2012, 1208.3642.

[30]  S. Brodsky,et al.  Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams , 2012, 1204.5793.

[31]  B. Ma,et al.  Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER) , 2012, 1203.5579.

[32]  D.Yu,et al.  Measurement of Transverse Single-Spin Asymmetries for J/psi Production in Polarized p+p Collisions at sqrt(s) = 200 GeV , 2010, 1009.4864.

[33]  S. A. Sadovsky,et al.  The physics of ultraperipheral collisions at the LHC , 2007, 0706.3356.

[34]  Unraveling hadron structure with generalized parton distributions , 2005, hep-ph/0504030.

[35]  X. Ji GENERALIZED PARTON DISTRIBUTIONS , 2004 .

[36]  J. Collins Leading-twist single-transverse-spin asymmetries: Drell–Yan and deep-inelastic scattering , 2002, hep-ph/0204004.

[37]  A. Radyushkin Nonforward parton distributions , 1997, hep-ph/9704207.

[38]  X. Ji Deeply Virtual Compton Scattering , 1996, hep-ph/9609381.

[39]  F. Dittes,et al.  Wave functions, evolution equations and evolution kernels from light ray operators of QCD , 1998, hep-ph/9812448.

[40]  G. Sterman,et al.  Single transverse spin asymmetries. , 1991, Physical review letters.

[41]  D. Sivers,et al.  Single-spin production asymmetries from the hard scattering of pointlike constituents. , 1990, Physical review. D, Particles and fields.

[42]  O. Teryaev,et al.  On Spin Effects in Quantum Chromodynamics , 1981 .