Dynamics of competitive population abundance of Lactobacillus plantarum ivi gene mutants in faecal samples after passage through the gastrointestinal tract of mice

Aim:  This study aims to evaluate the impact of mutation of previously identified in vivo‐induced (ivi) genes on the persistence and survival of Lactobacillus plantarum WCFS1 in the gastrointestinal (GI) tract of mice.

[1]  M. Kleerebezem,et al.  Spatial and Temporal Expression of Lactobacillus plantarum Genes in the Gastrointestinal Tracts of Mice , 2006, Applied and Environmental Microbiology.

[2]  Jos Boekhorst,et al.  Genome-Wide Detection and Analysis of Cell Wall-Bound Proteins with LPxTG-Like Sorting Motifs , 2005, Journal of bacteriology.

[3]  J. Walter,et al.  A High-Molecular-Mass Surface Protein (Lsp) and Methionine Sulfoxide Reductase B (MsrB) Contribute to the Ecological Performance of Lactobacillus reuteri in the Murine Gut , 2005, Applied and Environmental Microbiology.

[4]  M. Kleerebezem,et al.  Genetic Characterization of the Bile Salt Response in Lactobacillus plantarum and Analysis of Responsive Promoters In Vitro and In Situ in the Gastrointestinal Tract , 2004, Journal of bacteriology.

[5]  M. Kleerebezem,et al.  Identification of Lactobacillus plantarum Genes That Are Induced in the Gastrointestinal Tract of Mice , 2004, Journal of bacteriology.

[6]  J. Walter,et al.  Identification of Lactobacillus reuteri Genes Specifically Induced in the Mouse Gastrointestinal Tract , 2003, Applied and Environmental Microbiology.

[7]  M. Kleerebezem,et al.  Complete genome sequence of Lactobacillus plantarum WCFS1 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Andrew Camilli,et al.  In Vivo Expression Technology , 2002, Infection and Immunity.

[9]  R. Isaacson,et al.  Identification of Escherichia coli Genes That Are Specifically Expressed in a Murine Model of Septicemic Infection , 2002, Infection and Immunity.

[10]  L. Gautier,et al.  Comparative Genomics of Listeria Species , 2001, Science.

[11]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[12]  V. L. Miller,et al.  Identification and Characterization ofYersinia enterocolitica Genes Induced during Systemic Infection , 2000, Infection and Immunity.

[13]  Vesa,et al.  Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract , 2000, Alimentary pharmacology & therapeutics.

[14]  C. Hill,et al.  The use of listeriolysin to identify in vivo induced genes in the Gram‐positive intracellular pathogen Listeria monocytogenes , 2000, Molecular microbiology.

[15]  S. Mazmanian,et al.  Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. , 1999, Science.

[16]  D. Beattie,et al.  Identification of novel staphylococcal virulence genes by in vivo expression technology , 1998, Molecular microbiology.

[17]  W. D. de Vos,et al.  Molecular characterization of the plasmid‐encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis , 1997, Molecular microbiology.

[18]  U. Hentschel,et al.  Bacterial infection as assessed by in vivo gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[19]  C. Thomas,et al.  Mutants in the CtpA copper transporting P-type ATPase reduce virulence of Listeria monocytogenes. , 1997, Microbial pathogenesis.

[20]  C. Thomas,et al.  The Listeria monocytogenes gene ctpA encodes a putative P-type ATPase involved in copper transport , 1997, Molecular and General Genetics MGG.

[21]  S. Lory,et al.  Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Garmyn,et al.  Lactobacillus plantarum ldhL gene: overexpression and deletion , 1994, Journal of bacteriology.

[23]  MJ Mahan,et al.  Selection of bacterial virulence genes that are specifically induced in host tissues , 1993, Science.

[24]  W. D. de Vos,et al.  Characterization and overexpression of the Lactococcus lactis pepN gene and localization of its product, aminopeptidase N , 1991, Applied and environmental microbiology.

[25]  B. Poolman,et al.  Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport , 1988, Journal of bacteriology.

[26]  R. E. Rose,et al.  The nucleotide sequence of pACYC184 , 1988, Nucleic Acids Res..

[27]  G. Venemâ,et al.  Isolation and characterization of Streptococcus cremoris Wg2-specific promoters , 1987, Applied and environmental microbiology.

[28]  S. Horinouchi,et al.  Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance , 1982, Journal of bacteriology.

[29]  S. Cohen,et al.  Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. , 1980, Journal of molecular biology.

[30]  H. Birnboim,et al.  A rapid alkaline extraction procedure for screening recombinant plasmid DNA. , 1979, Nucleic acids research.

[31]  R. Schoenfeld,et al.  Comparative Genomics of Listeria Species , 1976 .

[32]  J. Vázquez-Boland,et al.  Regulation of virulence genes in Listeria. , 2001, International journal of medical microbiology : IJMM.

[33]  E. Zoetendal,et al.  DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract. , 2001, Systematic and applied microbiology.

[34]  D. Low,et al.  Assessment of bacterial pathogenesis by analysis of gene expression in the host. , 2000, Annual review of genetics.

[35]  P. Stanssens,et al.  Characterization of a gram-positive broad-host-range plasmid isolated from Lactobacillus hilgardii. , 1989, Plasmid.