ORILAM‐SOA: A computationally efficient model for predicting secondary organic aerosols in three‐dimensional atmospheric models

[1] This paper describes the aerosol model Organic Inorganic Lognormal Aerosol Model including Secondary Organic Aerosol (ORILAM-SOA) which is an extension of the lognormal aerosol dynamics model ORILAM. ORILAM-SOA consists of the original aerosol dynamics routines, a photochemical scheme able to predict SOA precursors, and an equilibrium scheme able to predict partitioning of the precursors between the gas and aerosol phases. We show that ORILAM-SOA is computationally efficient enough to be run in three-dimensional (3-D) atmospheric models. ORILAM-SOA is based on existing models. We use a numerical reduction technique to reduce the Caltech Atmospheric Chemistry Mechanism (CACM) and a new, fast, convergent iteration technique to increase the speed of the Model to Predict the Multiphase Partitioning of Organics (MPMPO). We compare the ORILAM-SOA to its parent models in terms of gas concentrations, aerosol concentrations, and CPU time spent during the computations. For illustrative purposes we include a 3-D simulation of SOA over southern France.

[1]  A. Nenes,et al.  ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols , 1998 .

[2]  Ari Laaksonen,et al.  Organic aerosol formation via sulphate cluster activation , 2004 .

[3]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[4]  G. Brasseur,et al.  Evaluation of photodissociation coefficient calculations for use in atmospheric chemical models , 1995 .

[5]  G. Ancellet,et al.  Observed and modelled “chemical weather” during ESCOMPTE , 2005 .

[6]  V. Kerminen,et al.  Condensational growth of atmospheric nuclei by organic vapours , 2003 .

[7]  J. Seinfeld,et al.  Global distribution and climate forcing of carbonaceous aerosols , 2002 .

[8]  C. Liousse,et al.  Aerosol modelling and validation during ESCOMPTE 2001 , 2005 .

[9]  D. Dabdub,et al.  Calculations of incremental secondary organic aerosol reactivity. , 2005, Environmental science & technology.

[10]  Valéry Masson,et al.  A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models , 2000 .

[11]  Karsten Suhre,et al.  Development of a reduced chemical scheme for use in mesoscale meteorological models , 2000 .

[12]  Askar H. Choudhury,et al.  PM10 and Asthma Medication in Schoolchildren , 2003, Archives of environmental health.

[13]  I. Isaksen,et al.  Quasi‐steady‐state approximations in air pollution modeling: Comparison of two numerical schemes for oxidant prediction , 1978 .

[14]  I. J. Ackermann,et al.  Modeling the formation of secondary organic aerosol within a comprehensive air quality model system , 2001 .

[15]  Véronique Ducrocq,et al.  The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations , 1997 .

[16]  D. Dockery,et al.  An association between air pollution and mortality in six U.S. cities. , 1993, The New England journal of medicine.

[17]  K. Suhre,et al.  ORILAM, a three‐moment lognormal aerosol scheme for mesoscale atmospheric model: Online coupling into the Meso‐NH‐C model and validation on the Escompte campaign , 2005 .

[18]  M. Jacobson Developing, coupling, and applying a gas, aerosol, transport, and radiation model to study urban and regional air pollution , 1995 .

[19]  Donald Dabdub,et al.  Development and initial evaluation of a dynamic species-resolved model for gas phase chemistry and size-resolved gas/particle partitioning associated with secondary organic aerosol formation , 2005 .

[20]  A. Dell'Acqua,et al.  Aerosol studies during the ESCOMPTE experiment: an overview , 2005 .

[21]  C. Kottmeier,et al.  The ESCOMPTE program: an overview , 2004 .

[22]  F. Solmon,et al.  Isoprene and monoterpenes biogenic emissions in France: modeling and impact during a regional pollution episode , 2004 .

[23]  P. Lacarrére,et al.  Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale Model , 1989 .

[24]  R. Monson,et al.  Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses , 1993 .

[25]  N Künzli,et al.  Public-health impact of outdoor and traffic-related air pollution: a European assessment , 2000, The Lancet.

[26]  M. Jenkin,et al.  Hydrocarbons and the long-range transport of ozone and pan across Europe , 1991 .

[27]  J. Mahfouf,et al.  The ISBA land surface parameterisation scheme , 1996 .

[28]  Jean-Pierre Pinty,et al.  A comprehensive two‐moment warm microphysical bulk scheme. II: 2D experiments with a non‐hydrostatic model , 2000 .

[29]  D. Jacob,et al.  Transport and scavenging of soluble gases in a deep , 2000 .

[30]  J. Seinfeld,et al.  Secondary organic aerosol 1. Atmospheric chemical mechanism for production of molecular constituents , 2002 .

[31]  Kostas Tsigaridis,et al.  Atmospheric Chemistry and Physics Global Modelling of Secondary Organic Aerosol in the Troposphere: a Sensitivity Analysis , 2003 .

[32]  F. Kirchner,et al.  A new mechanism for regional atmospheric chemistry modeling , 1997 .

[33]  K. Lehtinen,et al.  A combined photochemistry/aerosol dynamics model : model development and a study of new particle formation , 2005 .

[34]  B. Vogel,et al.  Intercomparison of the gas-phase chemistry in several chemistry and transport models , 1998 .

[35]  Christian Seigneur,et al.  Secondary organic aerosol 2. Thermodynamic model for gas/particle partitioning of molecular constituents , 2002 .

[36]  Sasha Madronich,et al.  Numerical integration errors in calculated tropospheric photodissociation rate coefficients , 1990 .

[37]  D. Blake,et al.  Characterization Experiment (ACE 1) Lagrangian B 1. A moving column approach , 1998 .

[38]  Claudia Marcolli,et al.  Water activity in polyol/water systems: new UNIFAC parameterization , 2005 .

[39]  J H Seinfeld,et al.  Ozone air quality models. A critical review. , 1988, JAPCA.

[40]  D. Strachan,et al.  Short-term associations between emergency hospital admissions for respiratory and cardiovascular disease and outdoor air pollution in London. , 1999, Archives of environmental health.

[41]  Pierre Tulet,et al.  Description of the Mesoscale nonhydrostatic chemistry model and application to a transboundary pollution episode between northern France and southern England. , 2003 .

[42]  P. Crutzen,et al.  Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry , 1997 .

[43]  Donald Dabdub,et al.  A Coupled Hydrophobic-Hydrophilic Model for Predicting Secondary Organic Aerosol Formation , 2003 .

[44]  Yvonne Andersson-Sköld,et al.  Secondary organic aerosol formation in northern Europe: A model study , 2001 .

[45]  G. Molinie,et al.  Description and first results of an explicit electrical scheme in a 3D cloud resolving model , 2005 .

[46]  Yoshiteru Iinuma,et al.  Aerosol-chamber study of the α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products , 2004 .

[47]  E. Bazile,et al.  A mass‐flux convection scheme for regional and global models , 2001 .

[48]  James F. Pankow,et al.  An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol , 1994 .

[49]  J. Pankow An absorption model of GAS/Particle partitioning of organic compounds in the atmosphere , 1994 .

[50]  F. Binkowski,et al.  The Regional Particulate Matter Model 1. Model description and preliminary results , 1995 .

[51]  P. Tulet,et al.  Interaction between local and regional pollution during Escompte 2001: impact on surface ozone concentrations (IOP2a and 2b) , 2005 .