K2_SPH method and its application for 2-D water wave simulation

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless particle method. However, its low accuracy of kernel approximation when particles are distributed disorderly or located near the boundary is an obstacle standing in the way of its wide application. Adopting the Taylor series expansion method and solving the integral equation matrix, the second order kernel approximation method can be obtained, namely K2_SPH, which is discussed in this paper. This method is similar to the Finite Particle Method. With the improvement of kernel approximation, some numerical techniques should be adopted for different types of boundaries, such as a free surface boundary and solid boundary, which are two key numerical techniques of K2_SPH for water wave simulation. This paper gives some numerical results of two dimensional water wave simulations involving standing wave and sloshing tank problems by using K2_SPH. From the comparison of simulation results, the K2_SPH method is more reliable than standard SPH.

[1]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[2]  S. Hess,et al.  Viscoelastic flows studied by smoothed particle dynamics , 2002 .

[3]  G. X. Wu,et al.  Second-order resonance of sloshing in a tank , 2007 .

[4]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[5]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[6]  Odd M. Faltinsen,et al.  A numerical nonlinear method of sloshing in tanks with two-dimensional flow , 1978 .

[7]  Ted Belytschko,et al.  Overview and applications of the reproducing Kernel Particle methods , 1996 .

[8]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[9]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[10]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[11]  Juntao Zhou,et al.  MLPG_R Method for Numerical Simulation of 2D Breaking Waves , 2009 .

[12]  J. Monaghan,et al.  SPH simulation of multi-phase flow , 1995 .

[13]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[14]  Guirong Liu,et al.  Investigations into water mitigation using a meshless particle method , 2002 .

[15]  J. K. Chen,et al.  An improvement for tensile instability in smoothed particle hydrodynamics , 1999 .

[16]  Aurèle Parriaux,et al.  A regularized Lagrangian finite point method for the simulation of incompressible viscous flows , 2008, J. Comput. Phys..

[17]  R. G. Owens,et al.  A numerical study of the SPH method for simulating transient viscoelastic free surface flows , 2006 .

[18]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[19]  W. Benz,et al.  Simulations of brittle solids using smooth particle hydrodynamics , 1995 .

[20]  O M Valtinsen A Nonlinear Theory of Sloshing in Rectangular Tanks , 1974 .

[21]  G. R. Johnson,et al.  NORMALIZED SMOOTHING FUNCTIONS FOR SPH IMPACT COMPUTATIONS , 1996 .

[22]  Gui-Rong Liu,et al.  A gradient smoothing method (GSM) for fluid dynamics problems , 2008 .

[23]  Edmond Y.M. Lo,et al.  Simulation of near-shore solitary wave mechanics by an incompressible SPH method , 2002 .

[24]  C. Ancey,et al.  Improved SPH methods for simulating free surface flows of viscous fluids , 2009 .

[25]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[26]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[27]  Didier Sornette,et al.  Solid friction at high sliding velocities: An explicit three‐dimensional dynamical smoothed particle hydrodynamics approach , 1999 .

[28]  P. Cleary,et al.  Conduction Modelling Using Smoothed Particle Hydrodynamics , 1999 .

[29]  S. Miyama,et al.  Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics , 1994 .

[30]  P. Cleary,et al.  CONDUCTION MODELING USING SMOOTHED PARTICLE HYDRODYNAMICS , 1999 .

[31]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[32]  Zhi Zong,et al.  Smoothed particle hydrodynamics for numerical simulation of underwater explosion , 2003 .

[33]  Qingwei Ma,et al.  Meshless local Petrov-Galerkin method for two-dimensional nonlinear water wave problems , 2005 .

[34]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[35]  Duan Wen-yang Study on the precision of second order algorithm for smoothed particle hydrodynamics , 2008 .

[36]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[37]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[38]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[39]  Wing Kam Liu,et al.  Multiresolution reproducing kernel particle method for computational fluid dynamics , 1997 .

[40]  Hitoshi Gotoh,et al.  Key issues in the particle method for computation of wave breaking , 2006 .

[41]  G. M. Zhang,et al.  Modified Smoothed Particle Hydrodynamics (MSPH) basis functions for meshless methods, and their application to axisymmetric Taylor impact test , 2008, J. Comput. Phys..

[42]  Gui-Rong Liu,et al.  Restoring particle consistency in smoothed particle hydrodynamics , 2006 .

[43]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[44]  D. Graham,et al.  Simulation of wave overtopping by an incompressible SPH model , 2006 .

[45]  J. K. Chen,et al.  A corrective smoothed particle method for boundary value problems in heat conduction , 1999 .

[46]  S. Atluri,et al.  The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple \& Less-costly Alternative to the Finite Element and Boundary Element Methods , 2002 .

[47]  Xing Zheng,et al.  Numerical simulation of dam breaking using smoothed particle hydrodynamics and viscosity behavior , 2010 .

[48]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[49]  Songdong Shao,et al.  Incompressible SPH simulation of water entry of a free‐falling object , 2009 .

[50]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[51]  R. Tanner,et al.  SPH simulations of transient viscoelastic flows at low Reynolds number , 2005 .

[52]  Qingwei Ma MLPG Method Based on Rankine Source Solution for Simulating Nonlinear Water Waves , 2005 .

[53]  Q. W. Ma,et al.  A new meshless interpolation scheme for MLPG_R method , 2008 .

[54]  Xing Zheng,et al.  Comparison of improved meshless interpolation schemes for SPH method and accuracy analysis , 2010 .

[55]  Romesh C. Batra,et al.  Wave propagation in functionally graded materials by modified smoothed particle hydrodynamics (MSPH) method , 2007, J. Comput. Phys..

[56]  Guirong Liu,et al.  Modeling incompressible flows using a finite particle method , 2005 .

[57]  R. A. Uras,et al.  Generalized multiple scale reproducing kernel particle methods , 1996 .