Embryological variation during nematode development.

Early cell lineages and arrangement of blastomeres in C. elegans are similar to the pattern found in Ascaris and other studied nematodes leading to the assumption that embryonic development shows little variation within the phylum Nematoda. However, analysis of a larger variety of species from various branches of the phylogenetic tree demonstrate that prominent variations in crucial steps of early embryogenesis exist among representatives of this taxon. So far, most of these variations have only been studied on a descriptive level and thus essentially nothing is known about their molecular or genetic basis. Nevertheless, it is obvious that the limited morphological diversity of the freshly hatched juvenile and the uniformity of the basic body plan contrast with the many modifications in the way a worm is generated from the egg cell. This chapter focuses on the initial phase between egg activation and gastrulation and deals with the following aspects: reproduction and diploidy, polarity, cleavage and germ line, cell lineages; cell cycles and maternal contribution, cell-cell communication and cell specification, gastrulation.

[1]  S. Gould The Shape of Life , 1996 .

[2]  E. Schierenberg,et al.  Altered establishment of cell lineages in theCaenorhabditis elegans embryo after suppression of the first cleavage supports a concentration-dependent decision mechanism , 1991, Roux's archives of developmental biology.

[3]  J. Priess,et al.  Cell interactions involved in development of the bilaterally symmetrical intestinal valve cells during embryogenesis in Caenorhabditis elegans. , 1992, Development.

[4]  E. Schierenberg,et al.  Cell lineages, developmental timing, and spatial pattern formation in embryos of free-living soil nematodes. , 1992, Developmental biology.

[5]  Steven N. Hird,et al.  Specification of the anteroposterior axis in Caenorhabditis elegans. , 1996, Development.

[6]  E. Schierenberg,et al.  Specification of gut cell fate differs significantly between the nematodes Acrobeloides nanus and caenorhabditis elegans. , 1998, Developmental biology.

[7]  A. Hyman,et al.  Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans , 1987, The Journal of cell biology.

[8]  Weismann August Die Continuität des Keimplasmas als Grundlage einer Theorie der Vererbung : ein Vortrag , 1892 .

[9]  F. Müller,et al.  Chromatin diminution in the parasitic nematodes ascaris suum and parascaris univalens. , 2000, International journal for parasitology.

[10]  V. Malakhov,et al.  Nematodes: Structure, Development, Classification, and Phylogeny , 1994 .

[11]  A. Coomans,et al.  Embryonic cell lineage of the marine nematode Pellioditis marina. , 2003, Developmental biology.

[12]  Theodor Boveri Uber Differenzierung der Zellkerne wahrend der Furchung des Eies von Ascaris megalocephala , 1887 .

[13]  B. Bowerman Maternal control of pattern formation in early Caenorhabditis elegans embryos. , 1998, Current topics in developmental biology.

[14]  W B Wood,et al.  Early transcription in Caenorhabditis elegans embryos. , 1994, Development.

[15]  E. Schierenberg,et al.  Egg development in parthenogenetic nematodes: variations in meiosis and axis formation. , 2006, The International journal of developmental biology.

[16]  E. Schierenberg,et al.  Regulative development in a nematode embryo: a hierarchy of cell fate transformations. , 1999, Developmental biology.

[17]  Mark L. Blaxter,et al.  A molecular evolutionary framework for the phylum Nematoda , 1998, Nature.

[18]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[19]  L. Frisse,et al.  Embryonic axis specification in nematodes: evolution of the first step in development , 1998, Current Biology.

[20]  E. Schierenberg Unusual cleavage and gastrulation in a freshwater nematode: developmental and phylogenetic implications , 2005, Development Genes and Evolution.

[21]  E. Schierenberg,et al.  Control of cell-cycle timing in early embryos of Caenorhabditis elegans. , 1985, Developmental biology.

[22]  Theodor Boveri Die Entwickelung von Ascaris megalocephala mit besonderer Rücksicht auf die Kernverhältnisse , 1899 .

[23]  G. Seydoux,et al.  Polarization of the anterior–posterior axis of C. elegans is a microtubule-directed process , 2000, Nature.

[24]  Y. Panchin,et al.  Cell lineage in marine nematode Enoplus brevis. , 1998, Development.

[25]  E. Schierenberg,et al.  Comparative and experimental embryogenesis of Plectidae (Nematoda) , 2003, Development Genes and Evolution.

[26]  Three sons of fortune: early embryogenesis, evolution and ecology of nematodes. , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[27]  J. Baldwin,et al.  Comparative survey of early embryogenesis of Secernentea (Nematoda), with phylogenetic implications , 2001 .

[28]  E. Schierenberg,et al.  Differences in maternal supply and early development of closely related nematode species. , 2004, The International journal of developmental biology.

[29]  R. Raff The Shape of Life , 1996 .

[30]  Hermann Müller Beitrag zur Embryonalentwickelung der Ascaris megalocephala , 1903 .

[31]  T. Schedl,et al.  The germline in C. elegans: origins, proliferation, and silencing. , 2001, International review of cytology.

[32]  M. Blaxter,et al.  Systematic position and phylogeny , 2002 .

[33]  B. Goldstein,et al.  On the evolution of early development in the Nematoda. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  S. Strome,et al.  Specification and development of the germline in Caenorhabditis elegans. , 1994, Ciba Foundation symposium.