An Invitation to Tame Optimization
暂无分享,去创建一个
[1] Osmond G. Ramberan,et al. Compte rendu / Review of book: Philosophy of Religion, second edition JOHN H. HICK Englewood Cliffs, NJ: Prentice-Hall 1973. ix, 133. $3.15 , 1974 .
[2] R. Aumann,et al. A variational problem arising in economics , 1965 .
[3] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[4] S. Łojasiewicz. Sur la géométrie semi- et sous- analytique , 1993 .
[5] Georges Comte,et al. Tame Geometry with Application in Smooth Analysis , 2004, Lecture notes in mathematics.
[6] Adrian S. Lewis,et al. Active Sets, Nonsmoothness, and Sensitivity , 2002, SIAM J. Optim..
[7] R. T. Rockafellar,et al. The Generic Nature of Optimality Conditions in Nonlinear Programming , 1979, Math. Oper. Res..
[8] S. Bates,et al. Toward a precise smoothness hypothesis in Sard’s theorem , 1993 .
[9] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[10] A. Ioffe. Critical values of set-valued maps with stratifiable graphs. Extensions of Sard and Smale-Sard theorems , 2008 .
[11] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[12] Giuseppe Buttazzo,et al. One-dimensional Variational Problems , 1998 .
[13] Charles Steinhorn,et al. Tame Topology and O-Minimal Structures , 2008 .
[14] K. Kurdyka. On gradients of functions definable in o-minimal structures , 1998 .
[15] Adrian S. Lewis,et al. Clarke Subgradients of Stratifiable Functions , 2006, SIAM J. Optim..
[16] L. M. Graña Drummond,et al. THE CENTRAL PATH IN SMOOTH CONVEX SEMIDEFINITE PROGRAMS , 2002 .
[17] Adrian S. Lewis,et al. THEINEQUALITY FOR NONSMOOTH SUBANALYTIC FUNCTIONS WITH APPLICATIONS TO , 2007 .
[18] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[19] J. Bolte,et al. TAME MAPPINGS ARE SEMISMOOTH , 2006 .
[20] Alec Norton,et al. Functions not constant on fractal quasi-arcs of critical points , 1989 .
[21] C. Lemaréchal,et al. THE U -LAGRANGIAN OF A CONVEX FUNCTION , 1996 .
[22] Richard B. Vinter,et al. Optimal Control , 2000 .
[23] Mario Tosques,et al. Curves of maximal slope and parabolic variational inequalities on non-convex constraints , 1989 .
[24] Etienne de Klerk,et al. On the Convergence of the Central Path in Semidefinite Optimization , 2002, SIAM J. Optim..
[25] A. Ioffe,et al. Theory of extremal problems , 1979 .
[26] M. Coste. AN INTRODUCTION TO O-MINIMAL GEOMETRY , 2002 .
[27] J. M. Borwein,et al. Distinct differentiable functions may share the same Clarke subdifferential at all points | NOVA. The University of Newcastle's Digital Repository , 1997 .
[28] H. Whitney. A Function Not Constant on a Connected Set of Critical Points , 1935 .
[29] L. Dries,et al. Geometric categories and o-minimal structures , 1996 .
[30] E. De Giorgi,et al. PROBLEMI DI EVOLUZIONE IN SPAZI METRICI , 1980 .
[31] A. Ioffe. Metric regularity and subdifferential calculus , 2000 .