An Invitation to Tame Optimization

The word “tame” is used in the title in the same context as in expressions like “convex optimization,” “nonsmooth optimization,” etc.—as a reference to the class of objects involved in the formulation of optimization problems. Definable and tame functions and mappings associated with various o-minimal structures (e.g. semilinear, semialgebraic, globally subanalytic, and others) have a number of remarkable properties which make them an attractive domain for various applications. This relates both to the power of results that can be obtained and the power of available analytic techniques. The paper surveys certain ideas and recent results, some new, which have been or (hopefully) can be productively used in studies relating to variational analysis and nonsmooth optimization.

[1]  Osmond G. Ramberan,et al.  Compte rendu / Review of book: Philosophy of Religion, second edition JOHN H. HICK Englewood Cliffs, NJ: Prentice-Hall 1973. ix, 133. $3.15 , 1974 .

[2]  R. Aumann,et al.  A variational problem arising in economics , 1965 .

[3]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[4]  S. Łojasiewicz Sur la géométrie semi- et sous- analytique , 1993 .

[5]  Georges Comte,et al.  Tame Geometry with Application in Smooth Analysis , 2004, Lecture notes in mathematics.

[6]  Adrian S. Lewis,et al.  Active Sets, Nonsmoothness, and Sensitivity , 2002, SIAM J. Optim..

[7]  R. T. Rockafellar,et al.  The Generic Nature of Optimality Conditions in Nonlinear Programming , 1979, Math. Oper. Res..

[8]  S. Bates,et al.  Toward a precise smoothness hypothesis in Sard’s theorem , 1993 .

[9]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[10]  A. Ioffe Critical values of set-valued maps with stratifiable graphs. Extensions of Sard and Smale-Sard theorems , 2008 .

[11]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[12]  Giuseppe Buttazzo,et al.  One-dimensional Variational Problems , 1998 .

[13]  Charles Steinhorn,et al.  Tame Topology and O-Minimal Structures , 2008 .

[14]  K. Kurdyka On gradients of functions definable in o-minimal structures , 1998 .

[15]  Adrian S. Lewis,et al.  Clarke Subgradients of Stratifiable Functions , 2006, SIAM J. Optim..

[16]  L. M. Graña Drummond,et al.  THE CENTRAL PATH IN SMOOTH CONVEX SEMIDEFINITE PROGRAMS , 2002 .

[17]  Adrian S. Lewis,et al.  THEINEQUALITY FOR NONSMOOTH SUBANALYTIC FUNCTIONS WITH APPLICATIONS TO , 2007 .

[18]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[19]  J. Bolte,et al.  TAME MAPPINGS ARE SEMISMOOTH , 2006 .

[20]  Alec Norton,et al.  Functions not constant on fractal quasi-arcs of critical points , 1989 .

[21]  C. Lemaréchal,et al.  THE U -LAGRANGIAN OF A CONVEX FUNCTION , 1996 .

[22]  Richard B. Vinter,et al.  Optimal Control , 2000 .

[23]  Mario Tosques,et al.  Curves of maximal slope and parabolic variational inequalities on non-convex constraints , 1989 .

[24]  Etienne de Klerk,et al.  On the Convergence of the Central Path in Semidefinite Optimization , 2002, SIAM J. Optim..

[25]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[26]  M. Coste AN INTRODUCTION TO O-MINIMAL GEOMETRY , 2002 .

[27]  J. M. Borwein,et al.  Distinct differentiable functions may share the same Clarke subdifferential at all points | NOVA. The University of Newcastle's Digital Repository , 1997 .

[28]  H. Whitney A Function Not Constant on a Connected Set of Critical Points , 1935 .

[29]  L. Dries,et al.  Geometric categories and o-minimal structures , 1996 .

[30]  E. De Giorgi,et al.  PROBLEMI DI EVOLUZIONE IN SPAZI METRICI , 1980 .

[31]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .