Invariants Cohomologiques de Rost En Caractéristique PositiveRost's Cohomological Invariants in Positive Characteristic

Let G/F be a semisimple algebraic group defined over a field F with characteristic p> 0. Let us denote byH(F,Qp/Zp(2)) the Galois cohomology group introduced by Kato. If p > 0, we show that thep-primary part of Rost’s invariant H1(F,G) → H(F,Qp/Zp(2)) lifts in characteristic 0. This result allows to deduce properties of the Rost invariant in positive characteristic from known properties in characteristic 0. The case of Merkurjev–Suslin’s invariant is specially interesting, i.e. if G/F = SL(D) for a central simple algebra D/F with degreep and class [D] ∈p Br(F) ≈ H2(F,Z/pZ(1)), one hasH1(F, SL(D)) = F×/Nrd(D×) and an element a ∈ F× is a reduced norm if and only if the ‘cup-product’ [ D] ∪ (a) is trivial in H3(F,Z/pZ(2)); one characterizes also in positive characteristic fields with p-dimension6 2 by the surjectivity of reduced norms. In a second part, we study Rost invariants when the base field is complete for a discrete valuation. As planned by Serre, invariants are then linked with Bruhat–Tits’ theory, this yields a new proof of their nontriviality. Mathematics Subject Classifications ( 2000):11E72, 20G10.

[1]  M. Raghunathan,et al.  Topological central extensions of semi-simple groups over local fields , 1984 .

[2]  R. Hoobler,et al.  The Bloch-Ogus-Gabber theorem , 1996 .

[3]  R. Fossum,et al.  On Picard groups of algebraic fibre spaces , 1973 .

[4]  Kazuya Kato Symmetric bilinear forms, quadratic forms and MilnorK-theory in characteristic two , 1982 .

[5]  J. Tits Strongly inner anisotropic forms of simple algebraic groups , 1990 .

[6]  B. Kahn Applications of weight-two motivic cohomology , 1996, Documenta Mathematica.

[7]  A. Ogus,et al.  Gersten's conjecture and the homology of schemes , 1974 .

[8]  S. Bloch,et al.  p-Adic etale cohomology , 1986 .

[9]  W. Raskind,et al.  K2-Cohomology and the second Chow group , 1985 .

[10]  L. Illusie Complexe de de Rham-Witt et cohomologie cristalline , 1979 .

[11]  Christoph Sorger,et al.  The line bundles on the moduli of parabolic G-bundles over curves and their sections , 1997 .

[12]  Marc Levine,et al.  The Arason invariant and mod 2 algebraic cycles , 1998 .

[13]  M. Rost Chow groups with coefficients , 1996, Documenta Mathematica.

[14]  S. Lichtenbaum New Results on Weight-Two Motivic Cohomology , 1990 .

[15]  A. Suslin Algebraic K-theory and the norm-residue homomorphism , 1985 .

[16]  E. Bayer-Fluckiger,et al.  Galois cohomology of the classical groups over fields of cohomological dimension≦2 , 1995 .

[17]  H. Bass,et al.  The Milnor ring of a global field , 1973 .

[18]  C. Sherman Some theorems on the k-theory of coherent sheaves , 1979 .

[19]  Holger P. Petersson,et al.  The Serre-Rost invariant of Albert algebras in characteristic three , 1997 .

[20]  V. Chernousov,et al.  Remark on the Serre (mod 5)-invariant for groups of typeE8 , 1994 .

[21]  S. Lichtenbaum The construction of weight-two arithmetic cohomology , 1987 .

[22]  M. Rost A (mod 3) invariant for exceptional Jordan algebras , 1991 .