A client/server control architecture for robot navigation

Abstract We address the problem of task decomposition in a mobile robot navigation system. A typical robot navigation algorithm consists of a number of concurrent modules. In order to accomplish the common goal of the navigation task, they share resources on the robot. In such a system resource access control and information sharing must be properly managed. We approach these two issues by using a client/server distributed programming paradigm. Two types of server are defined: data server and hardware server . An indoor navigation system developed using the client/server model described above is presented.

[1]  Rodney A. Brooks Small autonomous mobile robots: sensing and action , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Rodney A. Brooks A hardware retargetable distributed layered architecture for mobile robot control , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[3]  James S. Albus,et al.  NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM) , 1989 .

[4]  M. P. Georgeff,et al.  Reasoning about plans and actions , 1988 .

[5]  Jonathan H. Connell,et al.  Minimalist mobile robotics - a colony-style architecture for an artificial creature , 1990, Perspectives in artificial intelligence.

[6]  Robin R. Murphy,et al.  Autonomous navigation in a manufacturing environment , 1990, IEEE Trans. Robotics Autom..

[7]  Reid Simmons,et al.  Autonomous task control for mobile robots , 1990, Proceedings. 5th IEEE International Symposium on Intelligent Control 1990.

[8]  R.G. Simmons,et al.  Concurrent planning and execution for autonomous robots , 1992, IEEE Control Systems.

[9]  Gregory R. Andrews,et al.  Paradigms for process interaction in distributed programs , 1991, CSUR.

[10]  Kazuhiko Kawamura,et al.  An Architecture Of A Distributed Object-oriented Robotic System , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Rodney A. Brooks,et al.  MIT mobile robots-what's next? , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[12]  Leslie Pack Kaelbling,et al.  An Architecture for Intelligent Reactive Systems , 1987 .

[13]  Avinash C. Kak,et al.  Fast vision-guided mobile robot navigation using model-based reasoning and prediction of uncertainties , 1992, CVGIP Image Underst..

[14]  Mark B. Kadonoff,et al.  Arbitration of Multiple Control Strategies for Mobile Robots , 1987, Other Conferences.

[15]  David S. Barrett,et al.  The world's largest one cubic inch robot , 1989, IEEE Micro Electro Mechanical Systems, , Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'.

[16]  Yoram Koren,et al.  Histogramic in-motion mapping for mobile robot obstacle avoidance , 1991, IEEE Trans. Robotics Autom..

[17]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..

[18]  Tom M. Mitchell,et al.  A Case Study in Robot Exploration , 1989 .

[19]  James S. Albus,et al.  Concept for a Reference Model Architecture for Real-Time Intelligent Control Systems (ARTICS) , 1990 .

[20]  Stephen John Walsh Indoor robot navigation using a symbolic landmark map , 1992 .

[21]  Reid G. Simmons,et al.  Concurrent planning and execution for a walking robot , 1990, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[22]  Anil K. Jain,et al.  Modular agents for robot navigation , 1993, Other Conferences.

[23]  David W. Payton,et al.  Goal-Oriented Obstacle Avoidance Through Behavior Selection , 1987, Other Conferences.

[24]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .