OPTIMAL CONTROL AND SHAPE OPTIMIZATION OF AORTO-CORONARIC BYPASS ANASTOMOSES

In this paper we present a new approach in the study of Aorto–Coronaric bypass anastomoses configurations. The theory of optimal control based on adjoint formulation is applied in order to optimize...

[1]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[2]  A. Aziz,et al.  Control theory of systems governed by partial differential equations , 1977 .

[3]  高等学校計算数学学報編輯委員会編,et al.  高等学校計算数学学報 = Numerical mathematics , 1979 .

[4]  C. Zarins,et al.  Carotid Bifurcation Atherosclerosis: Quantitative Correlation of Plaque Localization with Flow Velocity Profiles and Wall Shear Stress , 1983, Circulation research.

[5]  P. G. Ciarlet,et al.  Introduction a l'analyse numerique matricielle et a l'optimisation , 1984 .

[6]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[7]  Jacques-Louis Lions Some Aspects of the Optimal Control of Distributed Parameter Systems , 1987 .

[8]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[9]  L. Hou,et al.  Boundary velocity control of incompressible flow with an application to viscous drag reduction , 1992 .

[10]  S Glagov,et al.  Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: effects of pulsatility, flow division, Reynolds number, and hood length. , 1993, Journal of biomechanical engineering.

[11]  D. Steinman,et al.  A numerical simulation of flow in a two-dimensional end-to-side anastomosis model. , 1993, Journal of biomechanical engineering.

[12]  A. Jameson Optimum aerodynamic design using CFD and control theory , 1995 .

[13]  C Kleinstreuer,et al.  Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients. , 1996, Journal of vascular surgery.

[14]  S Glagov,et al.  Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions. , 1997, Journal of biomechanical engineering.

[15]  Martin Berggren,et al.  Numerical Solution of a Flow-Control Problem: Vorticity Reduction by Dynamic Boundary Action , 1998, SIAM J. Sci. Comput..

[16]  S. Ravindran,et al.  A Penalized Neumann Control Approach for Solving an Optimal Dirichlet Control Problem for the Navier--Stokes Equations , 1998 .

[17]  Andrea Giachetti,et al.  ViVa: the virtual vascular project , 1998, IEEE Transactions on Information Technology in Biomedicine.

[18]  E. Laporte Optimisation de formes pour ecoulements instationnaires , 1998 .

[19]  L. S. Hou,et al.  Numerical Approximation of Optimal Flow Control Problems by a Penalty Method: Error Estimates and Numerical Results , 1999, SIAM J. Sci. Comput..

[20]  P. Tallec,et al.  Shape Optimisation in Unsteady Flows , 1999 .

[21]  C. R. Ethier,et al.  A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. , 1999, Journal of biomechanical engineering.

[22]  S. Raghunathan,et al.  Numerical Study of Blood Flow Through the Taylor Arterial Bypass Model , 2000 .

[23]  Olivier Pironneau,et al.  Optimal Shape Design , 2000 .

[24]  Alfio Quarteroni,et al.  Computational vascular fluid dynamics: problems, models and methods , 2000 .

[25]  Nicolas Di Césaré Outils pour l'optimisation de forme et le controle optimal : application a la mecanique des fluides , 2000 .

[26]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[27]  Karl Kunisch,et al.  Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..

[28]  Roland Becker,et al.  Mesh Adaptation for Stationary Flow Control , 2001 .

[29]  Thomas Slawig,et al.  Domain Optimization for the Navier‐Stokes Equations by an Embedding Domain Technique , 2001 .

[30]  J. Watterson,et al.  Haemodynamics of Modified Distal Bypass Graft Anastomoses , 2001 .

[31]  Antony Jameson,et al.  Computational Fluid Dynamics for Aerodynamic Design: Its Current and Future Impact , 2001 .

[32]  Jean-Paul Zolesio,et al.  Optimal control of fluid-structure interaction systems : the case of a rigid solid , 2002 .

[33]  J. Watterson,et al.  Is there a haemodynamic advantage associated with cuffed arterial anastomoses? , 2002, Journal of biomechanics.

[34]  J. Watterson,et al.  Numerical investigation of the haemodynamics at a patched arterial bypass anastomosis. , 2002, Medical engineering & physics.

[35]  J. Watterson,et al.  Computational and experimental simulations of the haemodynamics at cuffed arterial bypass graft anastomoses , 2002, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[36]  Alfio Quarteroni,et al.  Mathematical Modelling and Numerical Simulation of the Cardiovascular System , 2004 .

[37]  Christopher P. Cheng,et al.  In Vivo Quantification of Blood Flow and Wall Shear Stress in the Human Abdominal Aorta During Lower Limb Exercise , 2002, Annals of Biomedical Engineering.